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ABSTRACT

Software-Deined Networking (SDN) is a novel network approach

that has revolutionised existent network architectures by decou-

pling the control plane from the data plane. Researchers have shown

that SDN networks are highly vulnerable to security attacks. For

instance, adversaries can tamper with the controller’s network

topology view to hijack the hosts’ location or create fake inter-

switch links. These attacks can be launched for various purposes,

ranging from impersonating hosts to bypassing middleboxes or

intercepting network traic. Several countermeasures have been

proposed to mitigate topology attacks but to date there has been no

comprehensive analysis of the level of security they ofer. A critical

analysis is thus an important step towards better understanding the

possible limitations of the existing solutions and building stronger

defences against topology attacks.

In this paper, we evaluate the actual security of the existingmech-

anisms for network topology discovery in SDN. Our analysis reveals

6 vulnerabilities in the state-of-the-art countermeasures against

topology attacks: TopoGuard, TopoGuard+, SPV and SecureBinder.

We show that these vulnerabilities can be exploited in practice to

manipulate the network topology view at the controller. Further-

more, we present 2 novel topology attacks, called Topology Freezing

and Reverse Loop, that exploit vulnerabilities in the widely used

Floodlight controller. We responsibly disclosed these vulnerabilities

to Floodlight. While we show that it is diicult to fully eradicate

these attacks, we propose ixes to mitigate them. In response to

our indings, we conclude the paper by detailing practical ways of

further improving the existing countermeasures.
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1 INTRODUCTION

Software-Deined Networking (SDN) is a new networking paradigm

that is gaining momentum as a technology for developing more

dynamic, agile and programmable networks in data centre and en-

terprise environments [25]. SDN proposes to decouple the control

logic (i.e., control plane) from the data forwarding functionality of

networking devices, i.e., data plane. One of the key beneits of SDN

is that it ofers centralised control. The SDN paradigm postulates

that the network’s intelligence resides in a logically centralised con-

troller, allowing the underlying network infrastructure to become

simple forwarding devices [52]. The controller maintains several

core services that are responsible for conducting critical functions

in the network, e.g., routing or network topology discovery. An-

other important aspect of SDN is its programmability. Through

the use of applications, running on top of the controller, and open

standard application programming interfaces, the controller can

easily reprogram and collect statistics from networking devices.

SDN applications are software-based programs designed to perform

high-level tasks in the network, such as balancing load, deining

access control list rules or monitoring traic. The controller typi-

cally has a northbound and a southbound interface to communicate

with the application and data planes, respectively. The OpenFlow

communication protocol, standardised by the Open Networking

Foundation (ONF) in 2011, is the de facto open-source standard

for the southbound interface [28]. The OpenFlow protocol has re-

ceived signiicant attention by the research community [23] and is

currently being used in real-world SDN networks, such as Google’s

B4 network [17].

Using OpenFlow, the controller installs low rules to instruct

switches on how to handle packets. Switches contain several low

tables, each with its own set of low rules. A low rule consists of

three ields: (i) matching criteria, (ii) action (e.g., drop the packet)

and (iii) priority. Every time a switch receives a packet whose head-

ers do not match any of its low rules, the switch encapsulates the

packet in an OpenFlow packet_in and forwards it to the controller.

The latter then installs a low rule in the switch through an Open-

Flow packet_out. From this point onwards, if the switch receives

a packet with identical headers, it uses the low rule previously

cached for as long as the low rule remains valid.

Despite its beneits, SDN broadens the attack surface and intro-

duces new security challenges. Several researchers have shown that

it is possible to launch security attacks at the application, control

and data planes [18, 24, 27, 41, 44, 45, 50, 54], while other work

has proposed countermeasures for improving the security of SDN

networks [5, 35, 37, 38, 47, 51, 53]. Among the proposed attacks,

topology attacks that aim at poisoning the network topology are

one of the most dangerous types. Although topology attacks are



well-known by the network security community [22, 42], the conse-

quences of such attacks in SDN networks can be more severe than

in traditional networks [2]. In traditional networks, adversaries can

only tamper with the topology of a small fraction of the network

by convincing a set of switches/routers of a speciic (fake) topology

event. Instead, SDN relies on the use of a logically centralised con-

troller with full network visibility. As the controller contains all the

network topology information, adversaries can inluence any part

of the network regardless of their location within the network. To

further complicate matters, SDN-enabled switches lack suicient

logic and capabilities to implement traditional countermeasures

such as dynamic Address Resolution Protocol (ARP) inspection.

Maintaining a genuine network topology view at the controller

is of utmost importance. SDN core services and applications require

real-time and accurate topology information to perform their tasks

correctly. If adversaries compromise the network topology, they

can redirect traic through compromised machines. This allows

bypassing middleboxes or conduct Man-in-The-Middle (MiTM) or

Denial-of-Service (DoS) attacks. Furthermore, adversaries can im-

personate hosts to receive their traic. This is especially dangerous

in the case of a server that handles a large amount of traic.

Our contribution

This paper demonstrates that securing the SDN topology discovery

mechanisms implies not only to design secure topology defences but

also to implement the topology services at the controller correctly.

Concretely, the contributions of this work are the following:

• We conduct a systematic security analysis of the state-of-

the-art defences against topology attacks (see footnote1).

This resulted in the identiication of 6 vulnerabilities in To-

poGuard, TopoGuard+, Stealthy Probing-Based Veriication

(SPV) and SecureBinder. We propose and implement attacks

against TopoGuard/TopoGuard+ and provide clear evidence

of other attacks against SPV and SecureBinder (Section 5).

• We discover important security vulnerabilities within the

topology services in Floodlight, one of the major SDN con-

trollers. Following the principle of responsible disclosure,

we notiied Floodlight about the vulnerabilities we identiied.

Then we introduce and practically demonstrate two novel

attacks, called Topology Freezing and Reverse Loop, that can

severely damage the controller’s view of the network. As

fully eliminating these attacks would require major changes

in the Floodlight controller, we propose practical ways of

mitigating such attacks (Section 6).

• Based on our indings, we also discuss possible ways of

further hardening the existing topology countermeasures to

defend against link fabrication and host location hijacking

attacks (Section 7).

1We contacted the authors of TopoGuard, TopoGuard+, SPV and SecureBinder to
request the source code of their solutions. They all replied to our emails and answered
our questions. Unfortunately, the authors of SPV and SecureBinder were unable to
share their source code with us.

Organisation. The remainder of this paper is organised as fol-

lows: Section 2 gives an overview of related work. Section 3 reviews

the SDN topology discovery mechanisms and briely summarises

the topology attacks and countermeasures proposed by other re-

searchers. Section 4 shows the laboratory setup we used for our

experiments. In Section 5, we analyse the security of TopoGuard,

TopoGuard+, SPV and SecureBinder and exploit weaknesses in each

of them to uncover new topology attacks. In Section 6, we introduce

Topology Freezing and Reverse Loop, two novel topology attacks that

leverage weaknesses in the way the Floodlight controller imple-

ments its topology services. Along with each of these attacks, we

propose ixes to mitigate them. Section 7 elaborates on practical

ways of further enhancing the existing countermeasures. Section 8

provides concluding remarks.

2 RELATED WORK

Hong et al. [15] and Dhawan et al. [11] were the irst to show how

adversaries can poison the network topology view at the controller

to create fake links between switches (i.e., link fabrication attacks)

or impersonate a victim host (i.e., host location hijacking attacks).

In response to these attacks, Hong et al. [15] and Dhawan et al. [11]

devised TopoGuard and SPHINX, respectively. TopoGuard prevents

these attacks by (i) adding an integrity check to topology packets (ii)

labelling switch ports to avoid hosts propagating topology packets

to the network and (iii) checking pre- and post-conditions (i.e., veri-

fying that a host left the previous network location beforemoving to

the new one). SPHINX proposes a general framework for detecting

the occurrence of attacks (not only topology attacks) by validat-

ing all network updates. To achieve its goal, SPHINX constructs a

low graph of observed traic between each pair of endpoints and

compares it with past graphs in order to ind anomalies. However,

neither TopoGuard nor SPHINX can thwart sophisticated topology

attacks. For example, adversaries can still perform host location

hijacking attacks either by spooing the victim host’s MAC address

or by exploiting the time that hosts are in transit, i.e., moving from

one network location to another one.

Skowyra et al. found two topology attacks against TopoGuard

called port amnesia and port probing [40]. They also proposed

Topoguard+, an extended version of Topoguard that additionally

checks for suspicious port reset events and tracks the latency of

inter-switch links. The latter allows detection of link fabrication

attacks by adversaries who relay topology packets using an out-of-

band channel. Another approach to detect relay-based link fabri-

cation attacks was proposed by Alimohammadifar et al. [4]. The

authors developed a security solution called SPV that periodically

injects probing packets to the network to ind fake inter-switch

links. Jero et al. introduced SecureBinder [19], a security solution

that uses a modiied legacy version of the 802.1x authentication

protocol tp bind together all host network identiiers. However,

the previous two solutions can only protect against certain attacks;

SPV is only suitable for inding fake links whereas SecureBinder

focuses only on preventing host location hijacking attacks.

This paper extensively analyses the security of TopoGuard, To-

poGuard+, SPV and SecureBinder and discusses possible research

directions to further improve them.



3 BACKGROUND

This section provides the background to understand the current

topology discovery mechanisms in SDN. Afterwards, we briely

review the state-of-the-art topology attacks and defences that have

been proposed by other researchers.

3.1 Topology discovery mechanisms in SDN

Below, we describe the process for discovering the network topol-

ogy in SDN. Subsequently, we introduce the Host Tracking Service

(HTS) and the Link Discovery Service (LDS), the two main con-

troller core services involved in network topology discovery.

Network topology discovery is the process by which the con-

troller learns about: (i) the network devices (e.g., switches), (ii) the

links between switches and (iii) the location of the hosts within

the network. The irst is achieved when switches establish a TCP

connection ś ideally with TLS/SSL ś and perform the OpenFlow

handshake with the controller. All switches have a unique identiier

known as DataPath ID (DPID). It is important to note that switches

themselves do not support any mechanism to discover links or track

hosts. For inter-switch link discovery, the controller relies on the

Link Discovery Service (LDS), whereas the Host Tracking Service

(HTS) is used for tracking the host’s location. Next, we describe the

HTS and the LDS in more detail.

TheHost Tracking Service (HTS)maintains information about

hosts (e.g., MAC and IP addresses) and their location within the

network, i.e., the DPID and port number of the switch where the

host is connected. To discover the host location, the HTS leverages

on OpenFlow packet_in packets triggered when a host sends a

packet for which the switch does not have any low-rule installed.

This causes the HTS to create an entry in the host proile table,

binding the host identiiers to its current network location. When-

ever a host migrates to a new network location, the host proile

table is updated following the procedure previously described. Sim-

ilarly, if a host disconnects from a switch, the latter notiies the

controller by sending an OpenFlow packet containing a port-down

event. In such a case, the HTS immediately proceeds to remove the

corresponding entry in the host proile table.

The Link Discovery Service (LDS) discovers and keeps track

of the links between switches. In most SDN controllers, the LDS

is based on the OpenFlow Discovery Protocol (OFDP) [3]. Figure 1

illustrates the process by which the controller can discover a unidi-

rectional link between two switches (denoted by S1 and S2). First,

the controller encapsulates a Link Layer Discovery Protocol (LLDP)

packet inside an OpenFlow packet_out packet and sends it to S1,

which in turn forwards the LLDP packet to S2. Subsequently, S2 en-

capsulates the LLDP packet in an OpenFlow packet_in and sends

it to the controller, allowing the LDS to discover a unidirectional

link from S1 to S2. Following the same approach, the controller can

also infer whether a reverse link exists, i.e., from S2 to S1. This pro-

cedure is performed regularly in order to account for the dynamics

of SDN networks. Existing inter-switch links are removed (i) if a

switch detects a port disconnection or (ii) if no LLDP packets are

received during a certain amount of time.

SDN

Controller

Switch

S1

Switch

S2Port 2

2

LLDP packet

Port 1

1

PACKET_OUT

with LLDP packet

3

PACKET_IN

with LLDP packet

OpenFlowTM link

Data link

Figure 1: Procedure to discover a unidirectional link from S1

to S2 using the OpenFlow Discovery Protocol (OFDP).

3.2 Existing topology attacks and defences

In this section, we summarise the existing topology attacks and the

defences that have been proposed to mitigate them.

Topology attacks typically assume that adversaries have some

knowledge of the network topology and can learn the network

identiiers of the victim host(s). These are realistic assumptions.

The network topology information can be recovered using standard

path tracing tools (e.g., traceroute) or applying reconnaissance

techniques (e.g., [41]). Similarly, as SDN networks use the same

(insecure) protocols as traditional networks (e.g., ARP or DHCP), it

is relatively simple for adversaries to obtain the network identiiers

of the victim host(s).

3.2.1 TopoGuard (NDSS’15). Hong et al. identiied two topol-

ogy attacks called host location hijacking and link fabrication which

have received signiicant attention in the last few years [15]. Hong

et al. also introduced TopoGuard, a security solution that impedes

adversaries from executing both attacks. TopoGuard considers ad-

versaries who can control one or more hosts, i.e., the controller and

the switches are fully trusted. TopoGuard also assumes the use of

SSL/TLS to protect the control channel between the controller and

each of the switches.

Attacks. In a host location hijacking attack, adversaries aim

to convince the controller that a victim’s host moved to another

network location. For this purpose, adversaries who control one or

more hosts can send packets using the network identiiers (e.g., the

IP and/or MAC address) of the victim host. This causes the HTS

to update the network location information of the victim’s host.

This attack can be successfully launched for as long as the victim

host remains idle. On the other hand, in a link fabrication attack

the goal of adversaries is to create fake links between switches.

Figure 2 shows several ways for adversaries to create such fake links.

For example, adversaries can modify legitimate LLDP packets or

even craft valid ones. Another approach consists of relaying LLDP

packets between two network locations using either an in-band or

an out-of-band channel. In all these cases, the adversary manages

to trick the controller into believing that there is a new inter-switch

link when the link does not actually exist. All packets that traverse

this link will be dropped or intercepted by the adversary.
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LLDP packets identical to those that originate from S3

port 1.

Figure 2: Link fabrication attack performed using two difer-

ent methodologies: (2a) relaying LLDP packets over an out-

of-band channel (2b) forging LLDP packets. In both cases,

the controller believes that there is a unidirectional link

from S3 port 1 to S1 port 1.

Countermeasures. Regarding the host location hijacking at-

tack, Hong et al. proposed to check pre- and post-conditions before

accepting a host migration as valid. The intuition behind this ap-

proach is that all genuine host migrations produce a series of events

that need to occur sequentially. Essentially, this implies that a host

needs to irst leave its current network location before being able to

connect to a new switch. More speciically, the controller irst waits

to receive a port-down from the switch where the host is initially

connected, and then it checks whether the host is still reachable at

the initial network location. Only if these conditions are satisied,

the controller accepts the migration as valid and the host can send

packets from its new network location. Despite this being a very

simple countermeasure, it enables detection of attacks where a host

appears to be in two locations simultaneously.

To prevent link fabrication attacks, Hong et al. proposed to (i)

protect the integrity of LLDP packets and (ii) avoid hosts’ partici-

pation in the LLDP propagation process. To ensure LLDP integrity,

a controller-signed ield ś computed over the DPID and the port

number of the source switch ś is added within LLDP packets. This

prevents adversaries from crafting fake LLDP packets. To guaran-

tee that LLDP packets are sent only to switches, a port-labelling

strategy was designed to identify which type of device is connected

to each switch port. This approach considers three possible states:

(i) HOST, (ii) SWITCH or (iii) ANY. HOST means that there is a host

connected to the switch port, SWITCH refers to the case where a

switch is connected, whereas ANY is used if no device is connected.

Initially, all switch ports are labelled as ANY. The port label is up-

dated based on the irst type of traic received by the switch on

each port. However, it is also important for their approach to be able

to łforgetž the port type. Recall that SDN networks are expected to

be used in dynamic environments where a host can be unplugged

and replaced by a switch (or vice versa). This requirement can be

satisied by resetting the port type to ANY every time a port-down

event is detected, i.e., when the host disconnects from the switch.

This port-labelling strategy prevents adversaries who control more

than one host from relaying LLDP packets, since these packets are

only sent to switch ports.

3.2.2 TopoGuard+ (DSN’18). Skowyra et al. presented two new

topology attacks called port amnesia and port probing that can be

successfully conducted even in the presence of TopoGuard [40]. Fur-

thermore, Skowyra et al. designed and implemented an extension

of TopoGuard, called TopoGuard+, which not only prevents port

amnesia attacks but also detects link fabrication attacks based on re-

laying LLDP packets through an out-of-band channel. TopoGuard+

defends against adversaries who control one or several hosts. The

controller and the switches are assumed to be trusted.

Attacks. In the port amnesia attack, the goal of the adversary

is to bypass the port-labelling technique proposed in TopoGuard.

Adversaries can disconnect and reconnect the network interfaces

of their hosts to reset the switch ports to ANY. This can let the

hosts emulate the behaviour of switches to transmit (fake) LLDP

packets to the controller.

In the port probing attack, the adversary circumvents the mecha-

nisms used in TopoGuard to thwart host location hijacking attacks

by exploiting the time it takes for a victim’s host to migrate to a

new network location. This attack leverages the fact that the host’s

identiiers are not bound to any network location while hosts are

in transit. A technique was proposed to stealthily and accurately

detect the moment that the victim’s host leaves its network location.

Even more, the authors demonstrated that a host migration can be

maliciously triggered remotely.

Countermeasures. TopoGuard+ extends TopoGuard by includ-

ing two new modules: (i) the Control Message Monitor (CMM) and

(ii) the Link Latency Inspector (LLI). The CMM enables the con-

troller to identify suspicious port-type resets during LLDP prop-

agation. For this purpose, the controller monitors the traic and

raises an alert if port-up or port-down are received while a LLDP

packet is in progress. This makes TopoGuard+ resistant to port

amnesia attacks. Nevertheless, the CMM module cannot detect link



fabrication attacks that rely on the use of an out-of-band channel.

To defend against such attacks, the LLI module is used. This module

detects fake links by keeping track of the latencies of the genuine

links between switches.

3.2.3 Stealthy Probing-Based Veriication (ESORICS’18).

Alimohammadifar et al. presented SPV, a stealthy probing-based

veriication approach for detecting any type of link fabrication

attack [4]. Similarly to most existing work, SPV assumes that the

SDN controller is trusted and that the control channels between the

SDN controller and the switches are protected. In contrast to other

works, SPV considers adversaries who can control not only hosts

but also a few switches within the network. The authors assume

that adversaries can use a low-bandwidth out-of-band channel to

create fake inter-switch links. However, the authors acknowledge

the fact that SPV cannot defend against adversaries who forward

all traic through the out-of-band channel, since this would create

a link that actually resembles genuine links in the network.

Countermeasures. To verify the legitimacy of inter-switch

links, SPV relies on the use of probing packets that are indistin-

guishable from normal traic. For this, SPV listens to the network

traic and maintains a list of reference packets sent by hosts. This

also includes the DPIDs of the switches from where these packets

were sent. For validating a link, SPV chooses a reference packet at

random from the ones previously stored in the list. To guarantee

the security of SPV, the reference packet cannot be a packet that has

previously been used by any of the two switches involved in this

link. SPV proposes using probing packets where some ields match

those of normal traic and some ields are randomised. Speciically,

the probing packet takes the Ethernet_type and Payload length from

the randomly-chosen reference packet while the source and desti-

nation MAC/IP addresses are chosen at random. Similarly to the

OFDP protocol, SPV sends the probing packet to the sender switch

which in turn forwards it to the destination switch. Upon receiving

the probing packet, the destination switch sends it back to the con-

troller. The core idea of their approach is simple yet efective; if the

probing packet returns to the controller, there exists a link between

these switches. Otherwise, SPV concludes that the link is fake and

removes it from the network topology view at the controller.

Additionally, a mechanism was designed to handle lost probing

packets (e.g., due to link failures). In such a case, SPV generates a

new probing packet by fetching the irst probing packet and using

the LineSweep algorithm [21, 32]. The new probing packet, which

is just slightly diferent from the irst one, is then sent to the sender

switch following the procedure previously described.

3.2.4 SecureBinder (USENIX’17). Jero et al. discovered an at-

tack called Persona Hijacking that takes advantage of the inherent

weaknesses in the identiier binding mechanisms in SDN [19]. Be-

sides proposing a very efective and dangerous attack, Jero et al.

introduced SecureBinder, a defence mechanism that can be used to

defeat host location hijacking attacks, including the port probing

attack introduced in TopoGuard+. SecureBinder assumes that ad-

versaries can control one or more hosts. The rest of the network

components are considered to be trusted.

Attacks. Persona Hijacking comprises two phases: (i) IP takeover

and (ii) low poisoning. In the IP takeover phase, the goal of the

adversary is to break the binding between the IP address and the

MAC address of the victim’s host. The adversary can successfully

launch this attack if it convinces the DHCP server to release the

victim’s IP address so that it can bind its ownMAC address to it. The

low poisoning phase is needed onlywhen the DHCP server checks if

the IP address is in use before assigning it to a new host. This phase

consists of all the necessary steps to break the binding between

the victim’s MAC address and its network location. Essentially, the

adversary exploits a low rule inconsistency on a switch to redirect

traic to itself. This attack can let adversaries fully takeover and

become the owner of the victim’s identiiers.

Countermeasures. SecureBinder binds together all hosts’ iden-

tiiers using a modiied legacy version of the 802.1x authentication

protocol [34] that additionally checks if the hosts MAC addresses

are valid, i.e., within the list of authorised hosts. The controller

takes the role of the authenticator, allowing the host (i.e., the suppli-

cant) to access the network after authenticating successfully. The

authenticator server, which is connected to the controller, contains

a database that binds each host’s MAC address with its certiicate.

In addition, SecureBinder leverages the SDN architecture to en-

sure that all binding control traic is sent directly to the controller

(instead of being broadcasted to the network). This prevents adver-

saries from sniing the control packets exchanged to establish those

bindings and allows the controller to perform several cross-layer

checks for validating the bindings when they are updated.

4 LABORATORY SETUP

Figure 3: Our hardware SDN network is composed of three

switches (i.e., Raspberry Pi 3 Model B) connected with each

other through a linear topology, a controller (i.e., AppleMac-

Book Pro) and several hosts (not shown in the image) con-

nected to the end of the Ethernet cables. All inter-switch and

controller-switch links are 100 Mb/s.



In the next sections, we analyse the security of the state-of-the-

art topology defences and the topology core services in Floodlight.

For this, we have performed experiments in an emulated environ-

ment using Mininet 2.3.0 [43] and in a hardware SDN network. Our

hardware SDN network, shown in Figure 3, comprises three Rasp-

berry Pi 3 Model B [12] acting as OpenFlow switches, a controller

running on an Apple computer and several hosts that are imple-

mented either in other Raspberries or in a ixed Desktop PC using

Linux. To allow multiple SDN-enabled switches to communicate

with the controller, we used a traditional L2 Ethernet switch whose

only function is to forward the OpenFlow packets from the con-

troller to the switches (and vice versa). We chose to use the Open

vSwitch [13] version 2.5.5 LTS as a switch2, while our controller is

based on Floodlight [30]. The choice of Floodlight was motivated

by the fact that most existing topology defences are implemented

on it. The controller was installed on a 64-bit Ubuntu 14.04 VM

with two cores of 2,8 GHz Intel Core i7 and 8GB of RAM.

5 SECURITY ANALYSIS OF THE
TOPOLOGY DEFENCES

In this section, we evaluate the security and propose new attacks

against TopoGuard, TopoGuard+, SPV and SecureBinder.

5.1 TopoGuard/TopoGuard+

As TopoGuard+ integrates all the security mechanisms used by

TopoGuard, we refer to the joint solution as TopoGuard+. One

of the main design goals of TopoGuard+ is to preclude any link

fabrication attack regardless of its nature. Despite TopoGuard+

mitigating relay-based link fabrication attacks to a large extent, we

identiied two new vulnerabilities in the mechanisms to track link

latencies as well as in the LLDP packet generation.

To exploit the weaknesses in the mechanisms to track link laten-

cies, we need to overload switches to increase the latency of the

inter-switch links. Intuitively, this could be a possible limitation of

our attacks since SDN-enabled hardware switches could incorpo-

rate mechanisms to defend against overloading by malicious hosts.

However, we want to stress that our indings and attacks can be

extrapolated to real-world SDN networks for several reasons. First,

SDN-enabled hardware switches contain simple CPUs, which re-

strict their capabilities for parsing and processing packets [10, 46].

Second, SDN-enabled hardware switches have a small low table

space that can only accommodate from hundreds to a few thousand

low rules [10, 20, 26]. For example, a widely used SDN-enabled

hardware switch like Pica8 can only support 8192 low entries [1].

Likewise, the rate at which low tables can be updated is limited. As

a result, SDN-enabled hardware switches can only handle 100-200

low rule updates per second [9, 14, 20, 41, 47, 48]. The previous two

limitations arise from the fact that SDN-enabled hardware switches

achieve wire-speed packet processing using Ternary Content Ad-

dressable Memory (TCAM), which is costly and power hungry.

Finally, Zhang et al. demonstrated that hosts do not need to directly

send packets to switches to overload them [54]. Instead, hosts can

trigger the controller into sending a suicient number of packets

to overload switches more efectively.

2Open vSwitch supports OpenFlow 1.4 protocol (and earlier).

5.1.1 Insecure mechanisms to track link latencies. As previ-

ously described, TopoGuard+ relies on the LLI module for measur-

ing the latency of the inter-switch links.

In TopoGuard+, LLDP packets contain a fresh encrypted time-

stamp so that the controller can measure the overall time between

sending and receiving an LLDP packet, (i.e.,����� ). For computing

the latency of an inter-switch link (e.g., ��1−�2), the controller sub-

tracts the latencies of the control links (i.e.,��1 and��2) from�����

(see Figure 4). The LLI module then compares��1−�2 with a thresh-

old that is determined using an interquartile range of the list of

valid latencies (see Algorithm 1). If��1−�2 is within the valid range

of latencies, the LLDP packet is processed correctly and ��1−�2 is

added to the list of valid latencies. Otherwise, TopoGuard+ raises

an alert and removes the link if the failure persists over time.
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Figure 4: Link Latency Inspector (LLI) module. The latency

of the link between S1 and S2, ��1−�2, is obtained as follows:

��1−�2 = ����� −��1 −��2.����� is the time between sending

and receiving an LLDP packet at the controller. ��1 and ��2

are the control link latencies of S1 and S2, respectively.

Algorithm 1 Procedure to compute the threshold

1: if delay != 0 then

2: q1← quartile(latency_list, 25)

3: q3← quartile(latency_list, 75)

4: interquartile_range← q3 − q1

5: threshold← q3 + 3 ∗ interquartile_range

6: if delay > threshold then

7: stop processing LLDP packet

8: else

9: add delay to latency_list

Below, we present two attacks against the LLI module where

adversaries inluence the link latencies to remove genuine links or

to create fake ones.

Attack 1. We discovered a new attack against TopoGuard+ that

allowed us to remove genuine links between switches. Our attack

leverages the fact that the controller removes existing links if their

latency is above the threshold in a few LLDP rounds.



Without loss of generality, let us describe the proposed attack

using the network topology shown in Figure 5a. During normal ex-

ecution, we observed that the latency of the links between switches

was approximately 4 ms (see third line in Figure 5b). Neverthe-

less, we found a way to increase the latency of the links between

switches using H1.

Initially, we conducted a series of experiments with diferent

numbers of packets and time between packet bursts then measured

how each strategy afected the latency of the inter-switch links.

Based on our experiments, we chose the smallest number of packets

that can suiciently overload S2 to drop its links to other switches.

Speciically, we injected bursts of 100 packets every 1 s with spoofed

source MAC addresses and the destination MAC address of H2. This

forced S2 to constantly request new low rules to the controller,

consuming a signiicant amount of its resources. Figure 5 shows

that TopoGuard+ started to report errors due to high latencies

(around 140 ms) and shortly after it began to remove the afected

links. Even if TopoGuard+ re-discovers these links after our attack,

we observed that this causes the controller to lose all the previous

information about them.

Attack 2. Recently, Shrivastava et al. were able to perform a

relay-based link fabrication attack against TopoGuard [39]. Yet,

this is no surprise since TopoGuard was not designed to preclude

those attacks. In this paper, we demonstrate that TopoGuard+ is

also vulnerable despite the efort of their authors to protect against

such attacks. In order to execute our attack, adversaries need to

increase the latency threshold until it becomes comparable to the

latency of their out-of-band-channel. However, this is not an easy

task since the latency threshold (i) depends only on the latencies of

the links that were previously marked as valid and (ii) is computed

using an interquartile range, which helps inding outliers.

Without loss of generality, let us describe our attack using the

network topology shown in Figure 5a. An adversary who controls

H1 can send a large number of packets to S2, resulting in an abrupt

increase in its resource consumption. Consequently, S2 either pro-

cesses the LLDP packets very slowly or drops them. Using this

method, the adversary cannot increase the latency threshold at her

will since the latency of the LLDP packets traversing S2 will fall

outside the range of valid latencies. Instead, the adversary should

opt for carefully overloading S2 over a longer period of time, in-

creasing the time it takes for S2 to process the LLDP packets only

slightly each time. By repeatedly doing so, adversaries can delay

LLDP packets in such a way that the latency threshold is gradu-

ally increased. As TopoGuard+ uses a single latency threshold for

the network, adversaries can mount this attack regardless of their

location within the network.

5.1.2 Lack of freshness in LLDP packets. In TopoGuard+, the

controller appends a MAC tag ś computed over the DPID and the

port number of the source switch ś to all LLDP packets. While

the authors of TopoGuard+ stated that it is essential to protect

the integrity of LLDP packets, their approach lacks freshness. This

makes it possible to reuse MAC tags to create valid LLDP packets.
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(a) Malicious H1 overloads S2.

10:31:38.915 INFO LINK delay between sw 3 and 2 is okay. delay:1ms, threshold:9ms
10:31:38.917 INFO LinkLatencyQueue.size: 395
10:31:38.918 INFO LINK delay between sw 1 and 2 is okay. delay:4ms, threshold:9ms
10:31:38.918 INFO LinkLatencyQueue.size: 396
10:31:38.918 INFO LINK delay between sw 2 and 1 is okay. delay:5ms, threshold:9ms
10:31:38.918 INFO LinkLatencyQueue.size: 397
10:31:38.918 INFO LINK delay between sw 2 and 3 is okay. delay:4ms, threshold:9ms
10:31:53.923 INFO LinkLatencyQueue.size: 398

...

10:33:24.303 ERROR Detected suspicious link discovery: abnormal delay during LLDP propagation
10:33:24.303 ERROR LINK sw 2 and 3
10:33:24.303 ERROR Link delay is abnormal. delay:82ms, threshold:9ms
10:33:24.303 ERROR Detected suspicious link discovery: abnormal delay during LLDP propagation
10:33:24.303 ERROR LINK sw 3 and 2
10:33:24.303 ERROR Link delay is abnormal. delay:142ms, threshold:9ms
10:33:24.303 ERROR Detected suspicious link discovery: abnormal delay during LLDP propagation
10:33:24.303 ERROR LINK sw 2 and 1
10:33:24.303 ERROR Link delay is abnormal. delay:145ms, threshold:9ms
10:33:24.304 ERROR Detected suspicious link discovery: abnormal delay during LLDP
propagation
10:33:24.304 ERROR LINK sw 1 and 2
10:33:24.304 ERROR Link delay is abnormal. delay:143ms, threshold:9ms

...

10:33:54.081 INFO Inter-switch link detected: Link [src=00:00:00:00:00:00:00:02 outPort=4,
dst=00:00:00:00:00:00:00:01, inPort=1]
10:33:54.081 INFO LinkLatencyQueue.size: 403
10:33:54.081 INFO Inter-switch link detected: Link [src=00:00:00:00:00:00:00:01 outPort=1,
dst=00:00:00:00:00:00:00:02, inPort=4]
10:33:54.081 INFO LinkLatencyQueue.size: 404
10:33:54.081 INFO Inter-switch link detected: Link [src=00:00:00:00:00:00:00:03 outPort=1,
dst=00:00:00:00:00:00:00:02, inPort=3]
10:33:54.082 INFO LinkLatencyQueue.size: 405
10:33:54.082 INFO Inter-switch link detected: Link [src=00:00:00:00:00:00:00:02 outPort=3,
dst=00:00:00:00:00:00:00:03, inPort=1]
10:33:54.088 INFO LinkLatencyQueue.size: 406

(b) Floodlight log console. Initially, the latencies of the inter-switch

links (i.e., S1-S2 and S2-S3) are valid and hence they are added to the

latency list. Subsequently, LLI detects a number of linkswith higher la-

tencies and stops processing the corresponding LLDP packets. After a

few LLDP iterations (approximately 20 s later), the controller removes

the links between S1-S2 and S2-S3 and then re-discovers the links as

new links.

Figure 5: Attack against the Link Latency Inspector (LLI)

module proposed by TopoGuard+. (5a) Network scenario.

(5b) Log console.



Attack. We tested the feasibility of this attack using our hard-

ware SDN network comprising two hosts, three switches and a

controller running TopoGuard+3 (see Figure 6). Our goal was to

create a fake unidirectional link from S3 to S1 using two malicious

hosts (H1 and H2) that can communicate over an out-of-band chan-

nel. Note that we assume that the ports of the switches where H1

and H2 are connected are initially set to HOST.
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(a) H2 sends the MAC tag of S3-Port1 inside the LLDP

packet to H1 such that the latter can forge valid LLDP

packets as if they originated from S3 port 1.

LLDP from S1-Port 1:

- Chassis ID = chassis_ID_S1

- Port ID = 1

- Opt TLV list:

- DPID = DPID_S1

- MAC = MACDPID_S1, 1

- EncTimestamp = t

- …

FAKE LLDP from S3-Port 1:

- Chassis ID = chassis_ID_S3

- Port ID = 1

- Opt TLV list:

- DPID = DPID_S3

- MAC = MACDPID_S3, 1

- EncTimestamp = t

- …

(b) H1 modiies the LLDP packet that it receives from

S1. It keeps all the ields excluding the Chassis ID and

the DPID, which are easily derivable, and learns the

valid MAC tag from H2.

Figure 6: Link fabrication attack against TopoGuard+ where

adversaries manage to forge valid LLDP packets.

As in the port amnesia attack proposed in TopoGuard+, the

irst step of our attack is to disconnect and reconnect the network

interfaces of both hosts (e.g., by unplugging the cables). This causes

the controller to reset their port type to ANY. For our attack to

succeed, the resetting needs to be done before an LLDP round starts

so that the CMM module does not lag these events as suspicious.

Then, H2 waits to receive an LLDP from the controller, which

contains a valid MAC for the corresponding DPID and port number

of S3, i.e., the source switch. At this point, H2 sends the valid

MAC tag to H1 over the out-of-band channel. Due to the lack of

freshness, the MAC tag needs to be exchanged only once. Upon

learning the MAC, H1 can successfully send LLDP packets as if

3We downloaded the source code of TopoGuard+ from its public repository in Git [49]
on Oct 2nd, 2018.

they were originating from S3 port 1. This triggers the controller

into believing that there is a real unidirectional link from S3 to S1.

We want to highlight that, as the process of creating this link does

not involve relaying LLDP packets, the LLI module is not capable

of detecting our attack.

5.2 Stealthy Probing-Based Veriication (SPV)

By conducting a thorough analysis of SPV, we found two weak-

nesses in the way the probing packets are generated and sent to

the switches. These vulnerabilities mainly stem from the fact that

network traic is not completely random in practice. Therefore, any

defence that uses probing packets is likely to have similar issues to

the ones we identiied in SPV.

5.2.1 Insuicient obfuscation in the probing packet. SPV pe-

riodically veriies the legitimacy of all inter-switch links by sending

probing packets that resemble normal traic. Yet, probing packet

generation is a very fragile task since ideally it requires (i) having

a large amount of network traic sent by hosts and (ii) obfuscating

the probing packets at diferent levels.

Attack. To validate a link while concealing the probing packet

from adversaries, SPV should ideally send the probing packets at

random times. However, as SPV uses newly discovered links before

verifying them, it is likely that one of the irst packets sent to this

link is a probing packet. Clearly, it is undesirable to use an unveriied

link for a long time. This observation reduces the randomness of the

process and increases the chances that adversaries can identify the

probing packets. To further improve their chances, adversaries who

control a large set of malicious hosts can inject enough packets in

the network to inluence the generation of probing packets. These

packets can contain Ethernet_type and Payload size ields that

are unique in the network. In both cases, whenever adversaries

receive a packet that is likely to be a probing packet, they can simply

forward it over the out-of-band channel. As discovered links are

used before SPV veriies them, even if adversaries fail to infer some

probing packets, they can still have a suiciently large time window

to perform their attacks.

The previous two observations show that it is very diicult to

create probing packets that resemble normal traic regardless of

how these are created.

5.2.2 Use of the LineSweep algorithm. Another importantweak-

ness of SPV originates from the use of the LineSweep algorithm for

generating new probing packets when the initial probing packet

fails to arrive to the destination. The LineSweep algorithm takes

the initial probing packet and slightly modiies it such that the

new probing packet is not completely diferent than the initial one.

Concretely, it chooses new IP and MAC addresses that are adjacent

to the ones used in the irst probing packet, e.g., in the same subnet.

Attack. The use of the LineSweep algorithm can expose useful

information to infer what packets are used for validating a link. In

a large network with many hosts, the probability of two hosts con-

nected to the same switch having adjacent IP and MAC addresses

is very low. Following this reasoning, adversaries can initially drop

the traic they receive ś including the irst probing packet ś and

wait until the second probing packet is sent. As the subsequent



probing packets will have almost identical IP and MAC addresses,

adversaries can identify and relay these probing packets using their

out-of-band channel. This way, adversaries can extend the time

window the controller uses this link for routing purposes before it

is removed from the network.

5.3 SecureBinder

SecureBinder thwarts host location hijacking attacks using a slightly

diferent version of a legacy 802.1x authentication protocol. We

acknowledge that SecureBinder clearly enhances the security of

the actual binding mechanisms in SDN. Nevertheless, we identiied

two potential weaknesses in the way the modiied legacy version

of the 802.1x authentication protocol is used.

5.3.1 Disconnect the good and connect the bad. SecureBinder

is an extension of a standard legacy 802.1x authentication protocol

that allows hosts to authenticate to the network. Before a host is

authenticated, the switch port where the host is connected accepts

only łauthentication traicž (i.e., 802.11x frames). In the 802.1x

protocol used by SecureBinder, hosts are authenticated only once

each time they change their location in the network (instead of in

every packet). The choice of extending a legacy 802.1x protocol

was motivated by the fact that per-message authentication would

incur a large overhead in the controller. However, we observed that

this decision comes with important security implications.

Our hypothesis was that, if adversaries can connect a (malicious)

host to the network location where the victim’s host is located

without triggering a port-down, they can bypass SecureBinder and

join the network without needing to authenticate themselves to

the authentication server. To force the victim’s host to move to

another network location, adversaries could follow an approach

similar to the one used in the port amnesia attack [40]. Crucial to

the proposed attack is that during the authentication procedure the

host does not establish any cryptographic session key with either

the controller or the switch. As a result, the packets transmitted

by hosts after completing the authentication protocol are neither

encrypted nor authenticated.

According to SecureBinder, it should be impossible to disconnect

and connect a host without triggering a port-down and a port-up

event even when the adversary has specialised equipment and physi-

cal access to the devices. We envision a scenario where the physical

hosts can contain several Virtual Machines (VMs) and a virtual

switch for routing the packets to/from each VM. In such a case, the

virtual switch (inside the physical host) should always inform the

corresponding physical switch when a VM is (dis)connected so that

the VM can authenticate to the controller using SecureBinder. The

way this is done depends on how the virtual switch is designed and

programmed. However, it is important to note that all the events

generated by the VMs should be treated as if they were originating

from a physical host connected to a physical switch.

Attack. We conducted several experiments to investigate if it

is possible to disconnect a (victim) host from its switch/port and

connect a (malicious) host fast enough such that the switch does

not notice about this disconnection. According to the IEEE 802.3

standard, if twisted pairs Ethernet connections are used between

switches and hosts, a signalling protocol is used where a link in-

tegrity pulse is sent by these devices every 16 ± 8 ms [16]. In other

words, a switch infers that a host is no longer connected if it does

not receive such a pulse in 24 ms. If adversaries can remotely detect

or trigger a (victim) host disconnection and immediately connect

a (malicious) host to the switch, they could beneit from the valid

ongoing communication session initiated by the victim’s host.

We started our experiments by running the command ifconfig

eth0 down && ifconfig eth0 up on a Mininet host to measure

the average time between disconnecting and re-connecting a net-

work interface. This test resulted in a delay of only 8 ms, which

indicates that it could be possible to circumvent SecureBinder in

order to add a malicious host in the network. (Recall that switches

can only detect that a host is no longer connected after 24 ms).

However, we observed that Mininet switches always detect the port

disconnection and send a port-down to the controller. In contrast

to real OpenFlow switches, Mininet switches do not implement any

signalling protocol with the host and thus they do not check the

port liveness before notifying the controller about the port-down.

In other words, Mininet emulates the disconnection of a host from a

switch without considering the delays introduced by the signalling

communication protocol between the host and the switch.

Subsequently, we used Wireshark to measure the average time

between a port-down and a port-up on the control plane. Similarly

to the previous test, this experiment also resulted in a delay of

8 ms. Motivated by the results obtained in Mininet, we tested our

hypothesis using our hardware SDN networkwith two Raspberry Pi

3 acting as a switch and host, respectively. However, in this case the

previous commands took 68 ms, whereas the average time between

the port-down and port-up was around 1630 ms on average.

While our preliminary results indicate that SecureBinder is ca-

pable of detecting our attack, we suggest that topology defences

should not base their security solely on the fact that port-down

and port-up events are all genuine (i.e., they are generated if and

only if a host really (dis)connects from/to a switch). As a future

work, we plan to further investigate how to accelerate the process

of disconnecting and reconnecting a network interface.

5.3.2 Insecure low level bindings. SecureBinder provides aweak

binding between the hosts’ MAC address and their network loca-

tion. More speciically, the main limitation of SecureBinder is that

it does not bind the authentication traic to the switch/port where

the host is connected.

Attack. Adversaries can intercept the authentication traic

from/to a victim host and replay it in a diferent network location.

If adversaries replay the victim’s authentication traic to a switch

whose path to the controller is faster, they can convince the con-

troller that the victim’s host is at their location. This attack can be

possible (i) if the adversary manages to insert an Ethernet hub in

the network or (ii) when the victim host and the adversary have

two VMs running on the same physical host.

Figure 7 shows a realistic network scenario where this attack

could be mounted. This network coniguration is known as in-band

SDN and is widely used in practice [8, 36]. Unlike out-of-band SDN

conigurations, where all switches can directly communicate to the

controller, only a few switches interact with the controller in an

in-band SDN coniguration.



In an in-band SDN coniguration, adversaries can intercept the

(plain) authentication traic from/to H1 (e.g., using an Ethernet hub)

and replay it to S2 using H2. If the link between S1 and S2 is slower

than the path between S2 and the controller, the authentication

traic sent by the adversary using H2 is received irst. This causes

the controller to believe that H1 is connected to S2. To improve

the efectiveness of this attack, the adversary could overload S1 to

deliberately increase the latency of the link between S1 and S2. The

main advantage of our attack is that, if H2 succeeds in convincing

the controller that H1 is connected to S2, H2 not only receives

all the traic to H1 but also prevents H1 from receiving its traic.

Even if the genuine authentication traic sent by H1 is eventually

received and validated by the controller, the previously installed

low rules can lead to inconsistencies in the data plane.
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Figure 7: Possible attack scenario against SecureBinder

using an in-band SDN network.

6 IMPLEMENTATION ATTACKS

In 2018, Nehra et al. showed that most SDN controllers lack security

mechanisms to protect the network topology information [29].

Motivated by their study, we manually inspected the source code of

the Floodlight controller to ind potential ways of tampering with

the network topology view at the controller4. Our analysis resulted

in the identiication of two new attacks called Reverse Loop and

Topology Freezing. These attacks do not require the controller or the

switches to be compromised, and assume that the control channel

between switches and the controller is protected using TLS/SSL.

Although these attacks are speciic to the Floodlight controller,

these (or similar) attacks are also likely to exist in other major SDN

controllers. Most controllers rely on the standard OFDP protocol,

each with minor message ield variations [29]. In addition, the

OFDP protocol is not well deined and lacks security mechanisms

to protect packet integrity and conidentiality. This results in ad

hoc insecure implementations.

4We downloaded the Floodlight controller version 1.2 from the oicial Git repository
on Sept 5, 2018 [31].

6.1 Reverse Loop

We unveil a new attack ś which we call Reverse Loop ś that exploits

a weakness in the way the LDS handles the LINK-TYPE ield inside

the LLDP packets. Before describing our attack, let us irst briely

explain what the purpose of the LINK-TYPE ield is. Suppose that

S1 and S2 are connected to each other and the controller does not

know yet about the existence of a link between them. Initially, the

controller sends an LLDP packet with the LINK-TYPE ield set to

‘0x01’ to S1 which in turn sends it to S2. Once the controller infers

a unidirectional link from S1 to S2, it immediately checks if the

reverse link (i.e., from S2 to S1) exists by sending an LLDP packet

to S2. However, in this case the LINK-TYPE ield is set to ‘0x02’

(instead of ‘0x01’). Note that the controller regularly repeats this

procedure with all switches to collect information about existing

or new inter-switch links.

The core idea behind the Reverse Loop attack is to extend the

duration of an LLDP round as much as possible to exhaust the

controller resources, potentially leading to crashes. To illustrate

how the Reverse Loop attack works, let us give an example using the

network topology shown in Figure 2b. Essentially, the adversary

proceeds in the same way as when a fake link is created from

S3 to S1. Speciically, the adversary (i.e., H1) starts by sending a

maliciously crafted LLDP packet containing the headers associated

with S3. The controller then proceeds as expected and sends an

LLDP packet with the LINK-TYPE ield set to ‘0x02’ to S1 to validate

if a reverse link exists from S1 to S3. Subsequently, the adversary

transmits the LLDP packet with the LINK TYPE ield set to ‘0x01’.

Crucially, we found that re-sending the initial LLDP packet (with the

LINK TYPE ield set to ‘0x01’) triggers the controller into checking

if the reverse link exists indeinitely. We then discovered an even

more powerful variant of our attack that induces the controller

into continuously computing the topology instance. This variant

leverages the fact that the LDS re-computes the topology instance

every time the latency of a link changes. (Note that from Floodlight

version 1.2 onwards, LLDP packets contain a time-stamp that is

used to determine the link latency).

To test the practicality and severity of the Reverse Loop attack,

we conducted a series of experiments where we instructed H1 to

send LLDP packets with a slightly modiied time-stamp to force the

controller into recomputing the topology instance. We tested our

attack in Mininet using a tree topology with depth 4 and fanout

3, comprising 81 hosts and 40 switches. Figure 8 illustrates the

resource consumption of the Floodlight process inside the controller

before and during the attack. To measure the CPU performance, we

used the top command on the Linux shell. This test demonstrates

that computing the topology instance is a very demanding task that

can cause the controller to crash. While we did not evaluate it, the

Reverse Loop also results in more LLDP packets being sent by the

controller, which can negatively impact the network bandwidth.

We highlight that the Reverse Loop attack can facilitate the cre-

ation of fake links using an out-of-band channel when TopoGuard+

is deployed. As the controller always sends an LLDP packet to check

for the reverse link whenever it receives a valid LLDP packet, our

attack can indicate whether the LLI module accepted the delayed

LLDP packet. Recall that the controller checks for the reverse link

only if the latency of the LLDP packet is within the valid range.
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Figure 8: CPU usage of the Floodlight controller during the

Reverse Loop Attack. In this example, the attack starts after

approximately 60 s.

The fundamental reason this attack is possible is because LLDP

packets lack integrity protection that guarantees that they have not

been tampered with, and originate from the sender switch. Protect-

ing the integrity of LLDP packets would mitigate such attacks to

a large extent, but this would require major changes in the Flood-

light controller. Additionally, we argue that the use of an anomaly

detection system could also help to keep track of the number of

times a certain LLDP packet is sent.

6.2 Topology Freezing

Our second attack ś which we call Topology Freezing ś afects the

module responsible for computing the topology instance. It can be

launched to łfreezež the current topology instance, preventing the

controller from updating part of the network topology view.

Essentially, our attack is based on the following observation:

When two links are created that originate from the same łoriginž

switch/port (e.g., S1 port 1) but end in two diferent network loca-

tions (e.g., S4 port 1 and S5 port 1), the LDS accepts both links and

treats the łmulti-linkž port as a broadcast domain port (see Figure 9).

As a result, the LDS removes the łoriginž port and its links from the

topology graph construction. Yet, we made the crucial observation

that these links are still being used by the controller to compute

the shortest path (using an outdated topology instance), causing

systematic runtime exceptions.

To show the consequences of performing our attack, we imple-

mented it in Mininet using the network topology shown in Figure 9.

As we conigured the network so that the shortest path between

two hosts is determined based on the number of hops, H3 and H6

initially communicate through Link A. (Note that our attack can

be executed regardless of the metric used to compute the shortest

path between a pair of hosts). To execute our attack, we used H4

and H5 to create two fake links between (i) S1-Port1 and S4-Port1

and (ii) S1-Port1 and S5-Port1. From this moment onwards and for

as long as S1-Port1 contained two links, the controller was unable

to fully update the topology instance and the forwarding module,

as shown in Figure 10.
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Figure 9: Topology Freezing Attack. H4 and H5 can success-

fully create two fake links originating from S1 Port1.

ERROR [n.f.t.TopologyManager] Error in topology instance task thread
java.lang.NullPointerException: null
at net.l[..].topology.TopologyInstance.dijkstra(TopologyInstance.java:624)
at net.l[..].topology.TopologyInstance.yens(TopologyInstance.java:1068)
at net.l[..].topology.TopologyInstance.computeOrderedPaths(TopologyInstance.java:790)
at net.l[..].topology.TopologyInstance.compute(TopologyInstance.java:168)
at net.l[..].topology.TopologyManager.createNewInstance(TopologyManager.java:1015)
at net.l[..].topology.TopologyManager.updateTopology(TopologyManager.java:208)
at net.l[..].topology.TopologyManagerUpdateTopologyWorker.run(TopologyManager.java:179)
at net.l[..].core.util.SingletonTaskSingletonTaskWorker.run(SingletonTask.java:69)
at java.util.concurrent.ExecutorsRunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)

Figure 10: Log ile in the Floodlight controller when freezing

the network topology.

Subsequently, we removed Link A from the network topology

and observed that H6 can no longer receive packets from H3. This

is because the controller keeps using an old topology instance and

hence uses Link A (which no longer exists) to carry the packets

between H3 and H6. It is interesting to see that even if the controller

learns about the existence of a new legitimate link between two

switches, it cannot update the topology instance and thus cannot

use the link. Therefore, adversaries can execute this attack to freeze

the network topology and act maliciously without being noticed by

the controller. We want to stress that this attack can complement

and increase the impact of existing SDN attacks. To maximise its

outcome, adversaries need to carefully choose the switch/port from

where they launch the attack. Updating the topology instance is

done sequentially based on the switches’ DPID, starting from the

switch with the lowest DPID. If the multi-link port is created on

the switch with the lowest DPID, the rest of the network is no

longer updated. The best strategy is therefore to perform the attack

from the switch with the lowest DPID. As the Floodlight controller

assigns the DPID to each switch based on its MAC address, inding

the switch with the lowest DPID is straightforward.



Fixing this vulnerability is not easy. The most intuitive solution

to defend against it would be to check if the link exists (e.g., by

pinging the other host) before using the link to send real traic.

7 PRACTICAL COUNTERMEASURES

To defend against topology attacks, SDN networks could simply

use a static network coniguration similar to traditional networks

(e.g., limiting the number of MAC addresses in a switch port) [2].

However, this is a tedious and error-prone approach that does not

account for the dynamics of SDN networks. Re-designing the exist-

ing topology discovery mechanisms would provide better security

and scalability guarantees [6, 33]. Yet, this is not a viable option

due to its diicult adoption. In this section, we propose simple yet

efective ways of extending the existing countermeasures to defend

against the attacks we found in Section 5.

Link fabrication attacks by forging LLDP packets. Protect-

ing the integrity of LLDP packets is crucial to prevent adversaries

from sending forged LLDP packets. As shown in Section 5, some of

the defences that were proposed to solve this problem lack fresh-

ness, allowing replay attacks. For example, TopoGuard proposed to

compute a MAC tag over the DPID and port of the source switch

using a cryptographic key that is only known to the controller. To

provide integrity protection with freshness, Alharbi et al. presented

a solution where the cryptographic key is updated in every LLDP

round [3]. The main limitation of their approach is that it requires

the controller to keep track of the keys used in each LLDP round.

To overcome the limitations of the previous solutions, we suggest

computing the MAC tag over the DPID, the port and a time-stamp

using a single cryptographic key (instead of using a diferent crypto-

graphic key in each LLDP round)5. This can easily be implemented

since LLDP packets already contain a time-stamp ield for calculat-

ing the link latency. Our modiication protects against adversaries

who (i) tamper with the DPID or the port to conduct link fabrication

attacks or (ii) alter the time-stamp ield inside the LLDP packets

(e.g., to execute a Reverse Loop attack).

Link fabrication attacks using out-of-band channels. We

note that the security mechanisms implemented in the LLI module

can be enhanced. One possible improvement would be for the LLI

module to distinguish between LLDP packets received from existing

links and those from new links. We suggest that the LLI module

allows for higher tolerances in the latencies of the existing links in

order to avoid attacks where adversaries aim at removing genuine

links. However, even with these improvements, the LLI module

can only mitigate these attacks. This is because the LLI module

cannot defend against adversaries who use sophisticated hardware

to relay packets, as acknowledged by Skowyra et al. [49]. The only

possible way to efectively preclude relay attacks is the use of

distance bounding protocols [7]. Distance bounding is a security

technique throughwhich it is possible to determine an upper-bound

on the physical distance between two parties, i.e., the prover and the

veriier. By combining physical properties of the communication

channel with a cryptographic challenge-response protocol, distance

bounding protocols can detect adversaries who use specialised

5The cryptographic key should be updated regularly to prevent certain types of crypt-
analytic attacks.

hardware to relay packets over an out-of-band channel. As a future

work, we plan to investigate how to apply the ideas behind distance

bounding protocols in SDN networks.

Host locationhijacking attacks. Unfortunately, theHTS only

relies on unencrypted and unauthenticated OpenFlow packet_in

packets to determine the hosts’ location in the network. The lack

of strong identiier bindings makes it possible to hijack the location

of a victim’s host. SecureBinder was introduced to protect SDN net-

works against host location hijacking attacks through a modiied

version of the 802.1x authentication protocol. While SecureBinder

mitigates host location hijacking attacks to a large extent, it is

based on a legacy 802.1x protocol that authenticates hosts only

once each time they connect to a new switch. This can be suicient

if the controller was always capable of securely inferring a port

disconnection from a host. As a future work, we plan to investi-

gate the possibility of developing a middle-ground solution where

the controller authenticates a host with a certain probability every

time it sends a packet to the network (instead of only once). Sev-

eral articles have already shown that it might not be suitable for

SDN networks to perform security operations in all packets due to

scalability issues. Instead, these articles propose to apply security

mechanisms only to (i) a set of packets selected at random [5] or

(ii) per low [55].

8 CONCLUSIONS

This paper presented an in depth evaluation of the security of the

topology discovery mechanisms in SDN. We conducted a security

analysis of the state-of-the-art topology defences which included

TopoGuard, TopoGuard+, SPV and SecureBinder. Our analysis re-

vealed that, even if TopoGuard/TopoGuard+ is used, adversaries

can still create fake links or remove genuine links. In addition, we

provided clear evidence that SPV and SecureBinder are both likely

to be vulnerable to attacks. Our work also uncovered weaknesses on

the Floodlight controller which enabled us to identify and demon-

strate two new topology attacks called Reverse Loop and Topology

Freezing. These attacks can be mounted for various purposes rang-

ing from performing DoS attacks to causing misleading behaviours

as a irst step before launching a more sophisticated attack. Finally,

we elaborated on possible ways of further improving the existing

countermeasures to defend against the new attacks we discovered.
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ABSTRACT

The rapid evolution towards the Industry 4.0 improves the per-

formances of Industrial Control Systems (ICSs). However, due to

the unmanageable re-engineering cost of pre-existing industrial

devices, insecure protocols continue to be used to manage these

systems. In this scenario, legacy protocols, such as the Modbus/TCP,

are still largely used to control a range of industrial processes along-

side with modern technologies. Consequently, hybrid industrial

infrastructures with both legacy and innovative devices require

novel security and prevention methodologies.

In this work, we present AMON (Automaton MONitor): an Intru-

sionDetection System (IDS) based onDeterministic Finite Automata

(DFA) for Modbus/TCP traicmonitoring. AMON combines DFAwith

the Longest Repeating Subsequence (LRS) algorithm, commonly

used in bioinformatics, to model the traic and identify anomalies.

In order to address the challenges presented in hybrid scenarios,

we extend AMON to work with the Constrained Application Proto-

col (CoAP), used for the Industrial Internet of Things (IIoT). We

show preliminary results in a simulated industrial network and

discuss possible implementation of the developed detection system

to secure hybrid industrial infrastructures.

CCS CONCEPTS

• Security andprivacy→ Intrusion detection systems; •Com-

puter systems organization→ Sensors and actuators.
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Intrusion Detection System, Anomaly Detection, Cyber-Physical

System, Industrial Security
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1 INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) systems allow

the management of a wide variety of industrial facility processes.

Threats to ICS infrastructures can cause serious economic and hu-

man damages. Stuxnet [10] represents the most famous malicious

worm targeting ICSs. Discovered in 2010, it was designed to target

Programmable Logic Controllers (PLCs) in nuclear plants in order

to modify the behavior of the centrifuges and damage them. An-

other example of threat to ICS networks is the Industroyer worm [4],

which caused an outage in the Ukraine’s power grid in 2016. This

malware installed a backdoor to communicate to a Command &

Control server and exploited the trusting nature of the protocol

to execute its payload by simply issuing commands. Last but not

least, the Triton worm [9], discovered in 2017, targeted Safety In-

strumented Systems (SISs) of a petrochemical processing plant. SISs

are special PLCs designed to keep the physical processes in a safe

state preventing incidents.

Nowadays, the Industry 4.0 paradigm created an hybrid industrial

scenario where legacy and novel systems coexist. This situation

opens up a series of challenges for the security of such systems.

The Modbus/TCP protocol [16] is a clear example of this kind of

challenges: designed with the idea of an isolated and trusted net-

work, it lacks basic security controls and is still largely used by

modern ICS operators. In order to protect the industrial control

networks, vendors provide speciic solutions for intrusion detection.

However, industries need novel security solutions addressing mon-

itoring of hybrid scenarios where legacy protocols work coupled

with IIoT ones, such as the CoAP [17]. Therefore, it is important

to develop novel detection techniques because the importance of

industrial systems makes them likely targets of Advanced Persistent

Threats (APTs): well funded, prolonged attacks which cover all the

attack surface of their targets, from social engineering to zero-day

exploits.

As contribution, in this work we:

• conceive a novel methodology based on DFA and the LRS

algorithm to model multi-periodic traic;

• present AMON: a novel security framework able to recognize

normal patterns of industrial Modbus/TCP and CoAP com-

munications, predicting data exchanges, and alerting in case

of suspicious and potentially dangerous deviations;

• build a hybrid ICS network simulation scenario with Mod-

bus/TCP and CoAP protocols using Mininet1;

1http://mininet.org
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• evaluate AMONwith experiments on diferent threat scenarios,

such as Denial of Service (DoS), Bufer Overlow, and Man In

The Middle (MITM) attacks.

The remainder of this paper is organized as follows. Section 2

describes the background with the protocols used in this work. Sec-

tion 3 analyzes related work considering Modbus/TCP and DFA in

security contexts. In Section 4, we describe our proposed methodol-

ogy which we evaluate in Section 5. Section 6 concludes the paper.

2 BACKGROUND

In this section we give an overview of the industrial protocols used

in this work.

2.1 Modbus and Modbus/TCP

Modbus [15] is an application layer protocol largely used in indus-

trial networks. Conceived in 1979, it became the de facto standard

for industrial communication. The protocol was designed for serial

networks but is nowadays available on the TCP/IP stack with re-

served port 502. The basic unit of a Modbus message is the Protocol

Data Unit (PDU) which is independent from the layer over which

it is communicated and consists of a Function Code (FC) which

is a 1 byte identiier for the operation requested and an optional

Data ield used by the server to perform the operation requested

by the client. The Modbus/TCP implementation includes a Modbus

Application Protocol Header (MBAP) which adds some information:

• Transaction Identiier (TI): a unique number which de-

ines a particular query/response couple;

• Protocol Identiier: used to identify Modbus/TCP packets

for intra-system multiplexing;

• Unit Identiier: used to identify entities when the network

consists of both serial and TCP/IP channels;

• Length: indicates the size of the Modbus/TCP packet.

The rest of the ields could vary depending on the FC of the

packet.

The Modbus protocol was built to work on serial networks in

which every entity was considered trusted and the isolation of the

network was considered enough to keep malicious actors out, this

leads to considerable vulnerabilities. Some of these issues carry

over in Modbus/TCP: the main problems we want to highlight

are the lack of authentication for masters or slaves and the lack of

encryption in the communication.

2.2 CoAP

The CoAP [17] is a service layer protocol used in IIoT scenarios and

designed to support the communications of resource constrained

entities such as sensors, microcontrollers, and embedded devices [8].

Messages are exchanged over UDP and the communications follow

a request/response pattern modeled after HTTP GET, POST, PUT,

DELETE methods. Each message starts with a ixed header which

holds the following information:

• Type: indicates the type of message, Conirmable (CON)

messages which must be acknowledged or rejected, Non-

Conirmable messages which must never be acknowledged,

Acknowledge (ACK)messages, and Reset (RST)messages used

for rejections.

• Code: indicates the class and details of the message using

the format c .dd . The class can be ł0ž for request messages,

ł2ž for success responses, ł4ž for client error responses and

ł5ž for server error responses.

• Message Id: unique value used to match requests with re-

sponses.

Following the header there is a variable length Token value

which is used to match requests with responses along with the

Message Id. This is followed by one ore more Options and an

optional Payload. It’s worth noting that the data of a response to

a GET request could be held in two diferent places: in the option

Uri-query (code ł15ž) if the response is piggybacked on an ACK

message or in the payload section if the response is an independent

message.

3 RELATED WORK

In this section, we present a literature review of the methodologies

conceived to use DFA for security, stressing those applied to ICSs.

3.1 Pattern DFA

A DFA [13] is a inite state machine which accepts an alphabet of

symbols and produces only one result for each sequence. It can be

deined as a 5-tuple (Q, Σ,δ ,q0, F ) where Q is the set of states, Σ is

the alphabet, δ : Q × Σ =⇒ Q is the transition function, q0 ∈ Q is

the initial state and F ⊆ Q is the set of inal states.

In [6], Goldenberg and Wool describe an approach using DFA

for anomaly detection in ICSs. We refer to this work as Pattern

DFA. The Pattern DFA models the periodic pattern of communica-

tion between a Human Machine Interface (HMI) and a PLC. It is

built automatically after a training phase during which query and

response packets are captured and analyzed and it difers from a

basic DFA because it does not have inal states since its intent is to

check that there are no variations in the expected periodic pattern

of packets. Moreover the results and output of the DFA are related

to the transitions that the packet traic produces (and not so much

to the states).

We will next summarise how Goldenberg and Wool describe the

anatomy of this DFA (which states and transitions deine it) and

how they automatically generate it from captured data.

Anatomy: each Pattern DFA has its own alphabet Σ built during

the initial training phase. Its symbols are deined by parts of the

Modbus/TCP packet:

(Q, FC,RN ,BC), (1)

where:

• Q: is the query/response lag.

• FC: is the Function Code.

• RN: is the Reference Number (this value is only speciied in

query packets and will always be ł0ž for responses).

• BC: is the byte count.

The DFA states represent the situation after the Pattern DFA

receives query or response packets and each one have normal and

exception transitions as deined by the transition function δ :

• Normal: this transition is triggered when the packet re-

ceived is the next one in the expected pattern. If the DFA is
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in state si , after this transition it will be in state si+1. This

transition can have subcases: a Mismatch happens when the

TI of a response does not match the one of the query, an

Oversized packet is a packet longer than 252 bytes.

• Retransmission: the packet received is the current packet

in the expected pattern. This causes a self loop transition

and is not considered an alert situation.

• Miss: the packet received is part of the pattern but it is

not the expected one. This is often caused by packets be-

ing dropped and is not considered an alert situation. If the

received packet is relative to state sj in the pattern, the fol-

lowing state will be sj+1.

• Unknown: the packet received is not part of the expected

pattern. This situation causes an unknown alert to be raised.

The next state will be reset to s0.

Additionally, the system determines if the master/client IP ad-

dress changed. If so, the security system will raise a master/client

IP changed alert.

While exceptional states do not usually raise alerts, the system

keeps track of the number of exceptional packets for each category

and uses this data during the automatic generation of the DFA.

Generation: the system automatically generates a Pattern DFA

after it captures and analyzes a number of packets during the train-

ing phase. The algorithm used for the generations is described in

detail in [6].

Goldenberg and Wool discuss how this approach is not suitable

to accurately model multi periodic traic (i.e., communications in

which there are diferent query/response patterns running at dif-

ferent speed). Using a single DFA to model such a scenario would

require a large amount of states and it would lead to many false

positives since the diferent patterns are most probably not in lock-

step.

To tackle this representation challenge, they propose a multi-

DFA model in which packets rejected as unknown by the standard

Pattern DFA are passed along to a second level DFA which models

the other pattern, and so on.

3.2 Statechart-based DFA

Kleinmann and Wool in [12] discuss an extension to the Pattern

DFAwhich involves a Statechart DFA to model multi periodic traic.

The scenario upon which they base their solution is that of a multi-

threadedHMIwhich runs diferent patterns of queries with diferent

scheduling frequencies.

The main idea of this solution is to use a diferent Pattern DFA to

model the traic produced by each thread and use a Pattern Selector

ϕ to diferentiate the traic among the DFA. Whenever a packet

pkt is received the system calls the function ϕ(pkt) and selects the

DFA based on the result: if ϕ(pkt) = ∅ then the packet is not part

of any DFA alphabet and the system raises an unknown alert. If

ϕ(pkt) = {A} then the packet is part of the alphabet of the Pattern

DFA A which is selected to run it. Finally, if ϕ(pkt) = {A1,A2, ...}

then the packet is part of multiple DFA alphabets and the system

gives it to the DFA for which its time of arrival is closest to the

expected one.

In order to identify the correct DFA among a set of candidates,

the time of arrival of a packet must be compared to the expected

arrival time of the next packet for each DFA. Therefore, the Pattern

DFA is extended to keep track of time intervals between states.

This extension closely resembles the one we propose in Section

4.2 although it must be noted that in our proposal the interval

efectively augments the symbols of the Pattern DFA’s alphabet and

is used to detect timing anomalies.

Training Phase: the Statechart DFA is built by splitting the train-

ing data into diferent channels and using the algorithm described

in [6] on each of them to generate the respective Pattern DFA.

The main challenge of this phase, in our opinion, is the split-

ting operation, since there is no way of automatically discerning a

channel from another by simply looking at the packets’ contents.

We propose a solution to this problem in Section 4.3.

3.3 Further Works

Markman et al. in [14] describe the structure of the communication

of a SCADA system for a water control facility as a series of bursts

of queries interspersed with silence. Their system checks the time

interval between queries and divides the bursts based on a threshold

(packets with small intervals are part of the same burst). They argue

that these bursts have semantic meaning (i.e., they are meant to

contain a certain pattern of queries and are not the result of a

bufering process).

Byres et al. in [3] use the attack tree representation technique

to detail possible real-world threat scenarios for SCADA systems

based on Modbus/TCP. According to this work, the attacks we will

analyze in the following sections fall under the category of support

goals which means that they are steps taken in order to achieve

some other goal. This highlights how AMON can be useful for an

early detection of potential threats and how it can help identifying

attacks before the inal payload execution.

Faisal et al. in [5] propose a speciications based IDS. Speciica-

tions are lists of allowed behaviors which are taken from design

documents andmanuals. They consider this approach valid forMod-

bus/TCP communications because of the simplicity of the protocol.

This approach is indeed optimal whenever a precise speciication

for the behavior of a network is available and AMON can enforce

particular speciications if given a specially crafted training dataset.

However, this level of precision is not always realistic. Moreover, in

very complex scenarios which employ lots of diferent Modbus/TCP

functions, the precision of the approach could decrease.

Kirat and Vigna in [11] use Longest Common Subsequence (LCSS)

algorithms (a category closely related to LRS algorithms) to col-

lect evasion behavior signatures from malware. Their technique

involves calculating a dif of two system call traces, one taken

from a sandboxed environment (which is characterized by evasion

behavior) and one taken from a normal environment (with the exe-

cution of some kind of payload). This information allows to identify

the point where the malware behavior diverges. In their approach,

they experience some problems relative to the fact that the LCSS is

not always the most meaningful one, we address similar issues as

detailed in Section 3.2.

Hajji et al. in [7] use a DFA to detect anomalous behavior in

Europay-Mastercard-Visa (EMV) transactions. The DFA described

in this work is built over a Transition State Graph which models a

secure transaction. This is similar to the approach of the Integrity
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DFA (cfr. Section 4.4) in the sense that DFA canwork to łparsež some

data (the ields of a Modbus/TCP packet or a series of operations

and states in a transaction) and alert deviations from a deined path.

Becchi and Crowley in [1] discuss the diiculties of implementing

signature based intrusion detection by translating regular expres-

sions in DFA and propose an hybrid deterministic and non deter-

ministic inite automaton model. This approach is diferent from

the one we used since we attempt to build a system able to adapt

automatically to diferent scenarios by using an anomaly based

technique.

Branch et al. in [2] use a time-dependant DFA to detect DoS at-

tacks. A time-dependant DFA deines time constraints on the state

transitions and treats a symbol which is in the correct place in a

sequence but does not respect the time constraints as a symbol not

part of the sequence (thus resetting the DFA to its irst state). This

idea is similar in principle to the extensions we made to the Pattern

DFA (cfr. Section 4.2) since it takes time intervals into considera-

tion. However, our approach extends the alphabet of the DFA in

order to keep its functions as simple (and fast) as possible. Another

fundamental diference is in the fact that the time-dependant DFA

described in [2] represent signatures for speciic attacks while we

take an anomaly detection approach and thus use DFA to represent

normal traic patterns in the connection.

We believe AMON can stand out among these works because of its

anomaly based approach united with a very detailed modeling of

the safe state of the communication which takes into consideration

aspects like data variations and packet exchange intervals.

4 AMON

In this section, we present AMON: a DFA based IDS for industrial

network traic monitoring. AMON is built by extending the Pattern

DFA (cfr. Section 3.1) and Statechart DFA (cfr. Section 3.2). This

extension is done both by augmenting the capabilities of the two

approaches and by combining themwith the Integrity DFA described

in Section 4.4.

In the following Subsections we irst describe the system and

adversary models for our work. Subsequently, we present our ex-

tensions and the new Integrity DFA in detail for the Modbus/TCP

protocol. Finally, we show how to translate these concepts to CoAP

and how to combine everything in the inal IDS scheme.

4.1 System and Adversary Models

In this section, we describe the system and adversary models used

for the development of AMON.

System Model: we consider ICS networks where a centralized

SCADA system monitors physical processes of industrial plants.

We design an hybrid network coniguration where a gateway acts

as protocol translator between legacy protocols and IIoT-ready ones.

This hybrid system model allows to face upcoming industrial net-

work implementations, where the legacy devices are coupled with

recent IIoT-ready devices. Legacy industrial components are used

along with innovative ones to contain re-engineering costs. We

assume that AMON runs on secured hardware and cannot be com-

promised.

Adversary Model: we assume the attacker to have some degree

of access to the network, this could be caused by direct physical

access to a control room or by machines being wrongly exposed to

the internet. Some of these intrusion vectors are detailed in [3].

We consider the following attack scenarios in this work:

• A MITM enabled by an ARP spooing attack which can mas-

querade a malicious host. In this case, the attacker has direct

connectivity to the central switch in the control room zone

network and is able to inject packets.

• A DoS attack performed by looding a network node with

requests. In this case, the attacker obtains control over a HMI

machine and is able to directly query the server.

• A Bufer Overlow attack exploited by sending packets in

which the Length ield is mismatched with the actual packet

size.

4.2 Extended Pattern DFA

The Pattern DFA described in Section 3.1 will detect diferent anom-

alies in the communication like unusual or unusually formed queries,

sequences of packets which do not relect the normal behavior or an

entity which is no longer working (because it will not send its share

of the packets). However, there are some attacks and anomalies

which would not be noticed:

• A DoS attack which attempts to lood the server by sending a

high number of packets while keeping the expected pattern.

• A MITM attack performed via ARP spooing.

• Integrity violations (e.g., response to a query with wrong

TI ).

To account for some of these possibilities we extended the Pattern

DFA alphabet (Eq. 1) with an indicator of frequency. A symbol in

the alphabet will thus be a 5-tuple of the form:

(Q, FC,RN ,BC,∆t), (2)

where, for query packets, ∆t is a measure of the time interval

from the preceding queries (we expect responses to immediately

follow the speciic queries so the value is always ł0ž for them). This

value must be rounded to account for a level of variation which is

expected in the normal communications of a physical network.

For each Pattern DFA transition we deine aWrong query in-

terval variant which is indicated by the ł*ž symbol (e.g., a normal*

packet is a normal packet with wrong query interval). Moreover,

we keep a T I : RN map for each query and we use it to set the

RN value for the corresponding response. This allows to correctly

identify responses when queries on diferent registers but with the

same FC are present in the pattern. We extend the check on IP

address also to MAC address adding new master/slave MAC address

changed alerts (MstMAC, SlvMAC). This ensures detection of ARP

spooing attacks.

4.3 Extended Statechart DFA

The main issue we want to tackle with this extension is the split-

ting of the packets into diferent channels to feed them to the

correct Pattern DFA during detection. We propose an LRS-based

algorithm to extract multiple repeating patterns from the packets’

stream captured during the training phase. The Statechart DFA
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function pseudocode can be found in Algorithm 1, the LRS function

pseudocode in Algorithm 2, their symbols are detailed in Table 1.

Algorithm 1 Statechart DFA Generation

1: procedure SC_Gen(Seq, Pattern_List )

2: Sub← LRS(Seq)

3: if (Len(Sub) > 0) then

4: Cleared_Sub ← CS(Seq, Sub)

5: Find_Sub(Sub, Pattern_List)

6: Find_Sub(Cleared_Sub, Pattern_List)

7: else if (Len(Seq) > 0) then

8: Add Seq to Pattern_List

Algorithm 2 Longest Repeating Subsequence

1: procedure LRS(Seq)

2: n← Len(Seq)

3: RST← Empty_Table(n+1, n+1)

4: IT← Empty_Table(n+1, n+1)

5: for (i← 1 to n + 1) do

6: for (j← 1 to n + 1) do

7: if (Seq[i] = Seq[j] AND i , j) then

8: RST[i][j]← RST[i-1][j-1]

9: Append(RST[i][j], Seq[i])

10: IT[i][j]← IT[i-1][j-1]

11: Append(IT[i][j], i)

12: else if (Len(RST[i][j-1]) > Len(RST[i-1][j])) then

13: RST[i][j]← RST[i][j-1]

14: IT[i][j]← IT[i][j-1]

15: else

16: RST[i][j]← RST[i-1][j]

17: IT[i][j]← IT[i-1][j]

18: LRS← FNO(IT)

19: Return LRS

Algorithm 3 Find Non Overlapping

1: procedure FNO(IT )

2: Vertical← FF_Vert(IT)

3: Horizontal← FF_Hor(IT)

4: Remove Horizontal indexes from Vertical

5: Return Vertical

Algorithm 1 starts by inding the LRS in all of the traic captured

during the training phase. The actual LRS in a long sequence of

symbols could have overlapping parts as shown in the following

example:

ABCDABCDABCD

In this example the LRS is ABCDABCD, the bold characters high-

light the symbols which overlap (albeit at diferent indexes on the

respective subsequences).

We want to avoid this occurrence to improve the overall perfor-

mance of the algorithm (if a simple subsequence like ABCD was

repeated n times we would need to run the LRS algorithm for n − 1

Table 1: Deinitions for Algorithm 1, 2, and 3.

LRS Longest Repeating Subsequence Algorithm

Len Returns length of sequence

CS Removes Sub’s states from Seq

Seq Initial sequence of states

Pattern_List Global list of patterns

RST Repeating Subsequence Table

IT LRS Index Table

FNO Find Non Overlapping subsequence

FF_Vert &

FF_Hor

Find irst vertical or horizontal occurrence of

the subsequence in the IT table

times in order to let the base pattern emerge). We also want to avoid

another problem: if a long sequence of repeating characters is inter-

spersed with the symbols from another repeating sequence, the LRS

will be preixed with repeating occurrences of the irst character

of the subsequence. An example is the sequence in which the sub-

sequence ABCD is interspersed with elements of the subsequence

EFGH :

ABCDEABCDFABCDGABCDH

If this sequence is repeated up to three times, the LRS algorithm

will extract the subsequence ABCDABCDABCDABCD which can

then be reduced to ABCD. However, if the sequence is repeated

four or more times the LRS algorithm will start preixing the results

with a number of occurrences of the irst characterA. This is indeed

expected behavior for a generic string but does not adapt well to

the query/response communication patterns we want to model.

To handle this problem we use the Find Non Overlapping (FNO)

function which is able to cut the overlapping parts of a subsequence

by looking at its index table IT . This function is described in Algo-

rithm 3: in the IT table the indexes relative to the irst occurrence

of the complete LRS in the last row partially overlap with the ones

relative to the irst occurrence in the last column: by removing the

overlapping indexes we will then remove the overlapping part of

the subsequence.

After this step, if the LRS is not empty we run the algorithm

again using it as an input in order to ind potential nested patterns.

Finally, we clear the original sequence from the subsequence’s

symbols in order to let other patterns emerge and we look for LRS

in this cleared subsequence (Cleared_Sub).

A sequence which has no LRS and is not empty is considered a

pattern and is added to the Pattern_List .

4.4 Integrity DFA

We designed the Integrity DFA (shown in Figure 1) to parse the

ields of each incoming packet. This Section describes it in detail.

Training Phase: the Integrity DFA’s training phase consists of

checking the FCs used during normal communication and storing

them in a list we will call Accepted_FCs. Moreover, response packets

are analyzed in order to learn the average variation of the data

which is returned: in many physical scenarios (e.g., water distribu-

tion systems) we expect to be able to predict a variation threshold

for the responses of subsequent queries (i.e., a water tank can not be

emptied instantly). An average data variation measure is saved for

each FC, RN couple (FCRN ), this allows us to distinguish between

queries with the same FC on diferent registers.
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Figure 1: The Integrity DFA.

Anatomy: in order to perform some integrity checks we update a

Transactionsmap (T I : FC) for every query. Moreover, we keep track

of the latest data for every FCRN identiier in order to calculate

the data variation for each response. The states of the Integrity DFA

are:

• S0: starting state, a packet arrived. The DFA will remain in

this state if non Modbus/TCP packets arrive (transition a).

• S1: the packet is a Modbus/TCP query.

• S2: the packet is a Modbus/TCP response.

• S3: the TI of the query is valid (i.e., this is not a retransmis-

sion).

• S4: this is the response to a pending query.

• S5: this query does not have a unique TI and is not valid =⇒

Alert.

• S6: this packet presents some anomalies:

ś the FC of this packet is not part of the accepted FCs (i.e.,

is not in Accepted_FCs) =⇒ Alert.

ś the FC of this response packet doesn’t match the one in

the query packet =⇒ Alert.

ś the TI of this response doesn’t match any pending query

=⇒ Alert.

• S7: this query packet is accepted.

• S8: this response packet is accepted.

• S9: this response packet presents an anomalous data variation

=⇒ Alert.

• S10: there is a mismatch between the size indicated in the

Length ield of the packet and its actual size =⇒ Alert.

A detailed description of the transitions is in Table 2.

4.5 CoAP integration

The previous Sections described the application of the Extended

Pattern, Statechart, and Integrity DFA to the Modbus/TCP protocol.

As part of our work we extended these approaches to CoAP: in

order to do so a simple translation is required (we found that only

one Modbus/TCP ield relevant to the DFA has no correspondence

in CoAP).

The ield translations are listed in Table 3, the symbol ∅ is used

when there is no correspondence for a particular ield, to indicate

Table 2: Integrity DFA Transitions.

a Not a Modbus/TCP packet

b This is a query packet: save TI and FC in Transactions map

c This is a response packet

d
The TI of this query packet is already present in the

Transactions map

e This is not a retransmitted query

f The TI of this response is in the Transactions map

g The TI of this response is not in the Transactions map

h The FC of this query is part of the accepted ones

i
The FC of this response corresponds with the one saved in

the Transactions map.

l
The FC of this response does not correspond with the one

saved in the Transactions map.

m The FC of this query is not part of the accepted ones

n The size of the packet and the Lenдth ield are mismatched

o

The diference between the data of this response and the

last seen data for its FCRN identiier is greater than

expected

a particular option by name we use the notation Options[Option-

Name].

Table 3: Modbus/TCP to CoAP translations.

Modbus/TCP CoAP

Transaction Identiier Message Id + Token

Function Code Code

Reference Number Options[Uri-Path]

Length ∅

4.6 Analysis and integration

AMON is the result of the combination and extension of the Pattern

DFA, Statechart and Integrity DFA, in this Section we explain the

reasons for this choice.

Combination: as seen in the previous sections the extended Pat-

tern DFA and Integrity DFA can detect diferent threats in a Mod-

bus/TCP communication and could be employed by themselves as

IDS. However, because of their focus on diferent aspects of the com-

munication (i.e. patterns and packet contents), we think they should

be employed together in order to compensate and synergize their

behavior. In Table 4, we show that there are some cases in which

the combination of the analysis of the two automata generates new

results.

The Integrity DFA is able to identify a packet classiied as Normal

by the Pattern DFA. Such packet could still have some suspicious

aspects, like a strange TI, a mismatch between the Length ield value

and the actual content or some strange variation of response data.

These scenarios are marked with (*) in Table 4. A packet accepted

by the Integrity DFA could actually be seen as Miss or Unknown

packet by the Pattern DFA. These scenarios are marked with (**) in

Table 4.

Worklow: on a practical side, the training phase for AMON consists

of the combination of the training phases of the modules with some

additions necessary for the extensions described in Section 4.2.
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Table 4: Ext. Patern and Integrity DFA synergies.

Ext. Pattern

DFA
Integrity DFA

Normal,

Oversized,

Mismatch

Will detect TI problems(*). Will detect data

length problems(*). Will detect anomalous data

variations(*).

Retransmission
A response packet will end in S6. A query will

end in S5.

Miss
A response could end in S6. A query could be

accepted(**).

Unknown

Based on the reason for the unknown

transition the Integrity DFA could end in every

state: S5 and S6 would be integrity alerts. S9

and S10 would be accepted(**).

The resulting training data includes the extended pattern de-

scription (cfr. 4.2), the set of authorized FCs and the expected data

variations.

After the training phase, the detection phase starts: AMON ana-

lyzes each packet sequentially irst through the extended Pattern

DFA and then through the Integrity DFA. Each module produces

a result state which is collected and analyzed to detect anoma-

lous situations (cfr. Figure 2). The Detector module looks at precise

sequences as well as percentages of states in order to decide if a

situation warrants an alert. In order to ind relevant sequences of

states, we applied a LRS algorithm to ind the longest repeating

substring (which difers from a subsequence because it requires

all the characters to be sequential) in the result states’ sequence

collected during some attack tests. More details can be found in

Section 5.

Figure 2: AMON Detection Worklow.

5 EVALUATION

This section describes the tests we ran to validate AMON against a

series of attacks and the scenario in which these attacks took place.

5.1 Simulation Scenario and Tools

Testing security solutions for industrial processes is a delicate issue

since actual real world attack implementations could endanger

critical assets and infrastructures. For this reason, we created a test

environment using Mininet, a tool which allows the simulation

of a network in a virtualized environment. With this approach

it is possible to avoid using expensive testbeds. Moreover, a new

network coniguration can be easily and quickly prototyped.

For this work, we developed a simulation environment for an

hypotetical industrial scenario: a water tower which gradually emp-

ties by illing up two consumers with diferent consumption rates.

This scenario is implemented with an hybrid network coniguration

which involves a server and a client conigured to communicate

respectively with the CoAP and Modbus/TCP protocols. The CoAP

server mimics a PLC connected to three sensors, one for the water

tower and the other for the consumer tanks. A gateway stands in be-

tween the server and the client and enables the communication by

keeping a local database of the server’s values, which is periodically

updated through CoAP requests, and by providing a Modbus/TCP

interface to the client. This coniguration models a realistic scenario

in which legacy components (i.e., the Modbus/TCP infrastructure)

are used along with innovative ones to contain re-engineering costs:

new sensors able to communicate over CoAP are installed in the sys-

tem while the legacy Modbus/TCP HMI-PLC coniguration allows

communication by installing the Modbus/TCP-CoAP gateway. All

the elements of the system are implemented in Python: the CoAP

server and the gateway client use the CoAPthon library [18], the

Modbus/TCP client and gateway server use the uModbus library2.

AMON runs on a fourth host which passively receives a copy of

each packet directed to or coming from the server through Switch

Port for Analysis (SPAN) also known as port mirroring. This is

conigured through the Open vSwitch3 ovs-vsctl tools. We represent

the network topology conceived for the tests in Figure 3.

Figure 3: Network coniguration for the attack tests.

The normal traic pattern for this network consists of a polling

cycle of CoAP requests which every second queries for the values

of the three tanks (t1, t2, t3) in order to keep the gateway local

database updated. The Modbus/TCP client sends queries for the

values of t1 and t2 (every 2 seconds) and for the value of t3 (every

10 seconds).

5.2 Attack Tests

To test the validity of our approach, we implemented a series of

attacks which explicitly attempt to sidestep the Extended Pattern

DFA and Integrity DFA detection capabilities.

We considered two categories of attacks:

• Malicious client: the attacker obtains the control of a client

and is able to query the server directly. The attacks and

results are described in Subsections 5.2.2 and 5.2.3.

• MITM with ARP spooing: a simple ARP spooing attack

can deviate the client/server communications through a ma-

licious host. This could lead to the obfuscation of physical

parameters of the system’s sensors or to the execution of

arbitrary operations by the actuators. The attacks and results

are described in Subsections 5.2.4, 5.2.5, and 5.2.6.

2https://github.com/AdvancedClimateSystems/uModbus/
3http://www.openvswitch.org/
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We conducted each attack separately against the Modbus/TCP

and CoAP links.

To evaluate these tests we check the capability of detecting

an ongoing attack, the time required, the emergence of a partic-

ular state sequence which can be used as an attack signature by

the Detector (and its coverage of the complete sequence of states

produced) and inally the emergence of particular percentages of

states (to use along with the attack signature to get more attack

details). We represent Integrity DFA states with the concatenation

of the states traversed by the packet, for example the state S0S1S3S7

indicates an accepted query.

5.2.1 Normal Trafic. We tested the behavior of the system under

normal traic to ensure the avoidance of false positives. The state

percentages for this test are listed in Table 5. The results highlights

that the Extended Pattern DFA only produces normal states with

a small percentage of delayed normal* packets. The Integrity DFA

accepts every query (S0S1S3S7 ) and response (S0S2S4S8).

Table 5: Normal Traic.

State Modbus/TCP CoAP

normal 99.24% 99.61%

normal* 0.76% 0.39%

S0S1S3S7 50% 50%

S0S2S4S8 50% 50%

The LRS of states emerged during this test covers 96.42% of the

states produced: S0S1S3S7, normal, S0S2S4S8, normal. This is the

expected pattern of states since it shows an accepted/normal query

followed by an accepted/normal response.

5.2.2 Standard DoS. In this attack, a malicious client loods the

server with a speciic query in order to impede its functions. The

query is one of the accepted queries collected during the training

phase (requesting the value relative to the tank t1) in order to avoid

the raising of unknown and integrity alerts.

Modbus/TCP link attack: the state percentages for the attack on

the Modbus/TCP link are presented in Table 6. The Modbus/TCP

states show a high percentage of miss* statuses since the query

looded is part of the accepted pattern. The CoAP traic shows

increased delays caused by the ongoing attack.

Table 6: Standard DoS results: Modbus/TCP.

State Modbus/TCP CoAP

normal 50% 61.11%

normal* 0.04% 38.89%

miss* 49.96% 0%

S0S1S3S7 50% 50%

S0S2S4S8 50% 50%

The LRS of states emerged during this attack covers 99.93% of the

states produced: S0S1S3S7, normal, S0S2S4S8, miss*. This sequence

of states is semantically correct for the Standard DoS attack in this

scenario and can be used to quickly identify it.

CoAP link attack: the CoAP link attack is somewhat diferent

from the Modbus/TCP one because in this case it’s not the CoAP

client running on the gateway which performs the attack but a third

malicious client. We chose this coniguration because we consider

the gateway as part of the safe system (malicious exploitation of

the gateway would lead to diferent possible attacks). The state

percentages for the CoAP link attack are listed in Table 7. This

attack afects the quality of the CoAP link communications (but

not so greatly the Modbus/TCP communications) and produces a

wider range of diferent states.

Table 7: Standard DoS results: CoAP.

State Modbus/TCP CoAP

normal 97.83% 12.79%

normal* 2.17% 7.04%

miss* 0% 14.93%

miss 0% 10.66%

retransmission* 0% 48.61%

mismatch 0% 5.97%

S0S1S3S7 50% 80.81%

S0S2S4S8 50% 19.19%

The LRS of states emerged during this attack covers 49% of the

states produced: S0S1S3S7, MstMAC, retransmission*. This sequence

of states shows that the IDS is able to recognize the external nature

of the attack (the MstMAC state) and can be used to identify it.

5.2.3 Smart DoS. A skilled attacker could attempt to fool the Pat-

tern DFA by performing a DoS attack using the normal communi-

cation pattern to lood the server.

Modbus/TCP link attack: the state percentages for this attack

on the Modbus/TCP link are listed in Table 8. As for the Stan-

dard DoS, the attack disturbed the CoAP communication link. The

Modbus/TCP link states are divided between normal and normal*

because the pattern is respected, the percentage of delayed pack-

ets is vastly increased with respect to the normal traic. We use

this information to complement the LRS of states described below.

Speciically, we recognize a Smart DoS attack only after that at least

20% of the states are normal*.

Table 8: Smart DoS results: Modbus/TCP.

State Modbus/TCP CoAP

normal 71.5% 62.5%

normal* 28.5% 37.5%

S0S1S3S7 50.02% 50%

S0S2S4S8 49.98% 50%

The LRS of states emerged during this attack covers 86% of the

states produced: S0S1S3S7, normal, S0S2S4S8, normal*, S0S1S3S7,

normal, S0S2S4S8, normal. This is not a very unusual sequence of

states even for a normal communication so we combine it with

percentage information to decide if an alert should be raised.

CoAP link attack: as in the Standard DoS, we conducted this

attack from a third malicious host. The state percentages for the

CoAP link attack are listed in Table 9.
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Table 9: Smart DoS results: CoAP.

State Modbus/TCP CoAP

normal 90.91% 13.94%

normal* 9.09% 4.85%

miss* 0% 70.91%

miss 0% 3.64%

retransmission 0% 1.21%

mismatch 0% 3.03%

S0S1S3S7 50% 85.45%

S0S2S4S8 45.45% 14.55%

S0S2S4S9 4.55% 0%

The LRS of states emerged during this attack covers 69% of the

states produced: normal, MstMAC, miss*. This sequence of states

shows how the attack actually disrupts the normal pattern of com-

munication (i.e., the obfuscation does not work) as we have a large

number of miss states.

5.2.4 Trafic snifing. In this attack the MITM simply receives and

forwards all the packets of the communication without modifying

them.

Modbus/TCP link attack: we present the state percentages for

this attack on the Modbus/TCP link in Table 10. The attack causes

delays in the communication (increased normal* rate), but no other

alert states.

Table 10: Traic Sniing: Modbus/TCP.

State Modbus/TCP CoAP

normal 91.0% 99.05%

normal* 9.0% 0.95%

S0S1S3S7 50% 50%

S0S2S4S8 50% 50%

The LRS of states emerged during this attack covers 78% of the

states produced: S0S1S3S7, SlvMAC, normal, S0S2S4S8, MstMAC,

normal. This sequence of states correctly identiies the ongoing

attack since it highlights an accepted query received from a diferent

client (MstMAC) and an accepted response from a diferent server

(SlvMAC). This sequence is common to most ARP spooing attacks,

so we will use other details to diferentiate them.

CoAP link attack: the state percentages for the CoAP link attack

are listed in Table 11. The attack causes more delays on this link as

the higher percentage of normal* packets shows.

Table 11: Traic Sniig: CoAP.

State Modbus/TCP CoAP

normal 97.56% 72.84%

normal* 2.44% 27.16%

S0S1S3S7 50% 50%

S0S2S4S8 50% 50%

The LRS of states emerged during this attack covers 64% of the

states produced: S0S1S3S7, SlvMAC, normal, S0S2S4S8, MstMAC. This

sequence of states is very similar to the Modbus/TCP link one and

the same observations we made apply also to this attack.

5.2.5 Bufer overflow atempt. Depending on its implementation,

a server could have Bufer Overlow vulnerabilities and an attacker

could try to exploit them by appending raw bytes to a packet.

This will result in a mismatch between the length indicated in the

packet ields and the actual size of the packet. This attack was only

tested on the Modbus/TCP link since on CoAP packets there are

no equivalent Length ields.

Modbus/TCP link attack: we list the state percentages for the

attack on the Modbus/TCP link in Table 12. The Extended Pattern

DFA states show the disturbance caused by the ongoing attack.

The Integrity DFA states correctly highlight the presence of packets

bigger than expected (S0S10), the presence of integrity alerts (S0S2S6)

is caused by the fact that the overlown queries’ TI are not saved,

causing the relative responses to raise the alerts.

Table 12: Bufer Overlow: Modbus/TCP.

State Modbus/TCP CoAP

normal 45.38% 98.89%

normal* 1.87.0% 1.11%

retransmission 4.42% 0%

miss* 4.72% 0%

retransmission* 4.32% 0%

miss 39.29% 0%

S0S1S3S7 1.47% 50%

S0S2S4S8 1.47% 50%

S0S10 48.53% 0%

S0S2S6 48.53% 0%

The LRS of states emerged during this attack covers 64% of the

states produced: S0S10, SlvMAC, S0S2S6, MstMAC, normal, S0S10,

SlvMAC, miss, S0S2S6, MstMAC, miss.

5.2.6 Replay. A way to perform a Replay attack is to change the

data ields of a packet before forwarding it to the client. In this

way, the packet will be accepted by the client and it will respect

the pattern.

Modbus/TCP link attack: the state percentages for the attack on

the Modbus/TCP link are listed in Table 13. This attack raises a few

Anomalous data variation alerts when the replay begins. We can use

this small percentage to identify and diferentiate it from a simple

Traic Sniing. We identify a Replay attack if we see between 0%

and 10% of S0S2S4S9 states.

Table 13: Replay: Modbus/TCP.

State Modbus/TCP CoAP

normal 92.41% 99.69%

normal* 7.59% 0.31%

S0S1S3S7 50% 50%

S0S2S4S8 48.71% 50%

S0S2S4S9 1.29% 0%

The LRS of states emerged during this attack covers 78% of the

states produced: S0S1S3S7, SlvMAC, normal, S0S2S4S8, MstMAC,

normal. This is equal to most of the ARP spooing states sequences

so we must use percentage information to raise a precise alert.
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CoAP link attack: the state percentages for the CoAP link attack

are listed in Table 14.

Table 14: Replay: CoAP.

State Modbus/TCP CoAP

normal 97.12% 64.14%

normal* 2.88% 35.86%

S0S1S3S7 50% 50%

S0S2S4S8 47.12% 8.48%

S0S2S4S9 2.88% 1.52%

The LRS of states emerged during this attack covers 69.5% of

the states produced: S0S1S3S7, SlvMAC, normal, S0S2S4S8, MstMAC,

normal*. The interesting part of this sequence is the higher impact

of the attack on the timings of the packets, hence the presence of a

normal* state.

5.2.7 Atack Detection. The presence of anomalous states in the

DFA results can provide the evidence of malicious activities in

the communications. We developed the AMON’s Detector module to

identify speciic ongoing attacks, by keeping a list of LRS signatures

and percentages of states. This module is responsible for raising the

alerts and it is fundamental to ilter the noise of the intermediate

level of information provided by the DFA states.

Table 15 and Table 16 summarize the signatures, the state per-

centages (not necessary for every attack, the symbol ∅ is used when

the signature is suicient to identify the attack), and show the in-

terval of time between the beginning of the attack and the raising

of the alert that we observed during the tests. These results show

how AMON is able to combine the data produced by various net-

work communications anomalies into efective alerts in a quick and

responsive way.

Table 15: Modbus/TCP: Signatures and Timeliness.

Signature Percentages ∆t Alert

S0S1S3S7, normal,

S0S2S4S8, miss*
∅ 18ms Standard DoS

S0S1S3S7, normal,

S0S2S4S8, normal*,

S0S1S3S7, normal,

S0S2S4S8, normal

normal∗ > 20% 74ms Smart DoS

S0S1S3S7, SlvMAC,

normal, S0S2S4S8,

MstMAC, normal

∅ 1.3s
Traic

Sniing

S0S10, SlvMAC, S0S2S6,

MstMAC, normal,

S0S10, SlvMAC, miss,

S0S2S6, MstMAC, miss

∅ 57ms
Bufer

Overlow

S0S1S3S7, SlvMAC,

normal, S0S2S4S8,

MstMAC, normal

0% <

S0S2S4S9 <

10%

2s Replay

6 CONCLUSION

In this work, we developed AMON, an IDS framework based on DFA

for Modbus/TCP and CoAP traic monitoring. The results obtained

implementing AMON in a simulated hybrid industrial scenario show

the usefulness of the conceived security system. In future work, we

Table 16: CoAP: Signatures and Timeliness.

Signature Percentages ∆t Alert

S0S1S3S7, MstMAC,

retransmission*
∅ 295ms Standard DoS

S0S1S3S7, MstMAC,

retransmission*
∅ 62ms Smart DoS

S0S1S3S7, SlvMAC,

normal, S0S2S4S8,

MstMAC

∅ 622ms
Traic

Sniing

S0S1S3S7, SlvMAC,

normal, S0S2S4S8,

MstMAC, normal*

0% <

S0S2S4S9 <

10%

2.7s Replay

will extend AMON considering real IIoT testbeds implementations.

Moreover, we will develop active features and evolve AMON to an

Intrusion Prevention System.
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