
AutoSec: Secure Automotive Data Transmission Scheme for
In-Vehicle Networks

Trupil Limbasiya

iTrust, Singapore University of

Technology and Design

Singapore

limbasiyatrupil@gmail.com

Amrita Ghosal

Department of Computer Science and

Information Systems, University of

Limerick

Limerick, Ireland

ghosal.amrita@gmail.com

Mauro Conti

Department of Mathematics,

University of Padua

Padua, Italy

conti@math.unipd.it

ABSTRACT
Modern vehicles comprise hundreds of Electronic Control Units

(ECUs) and sensors for enhancing numerous security and comfort-

related functionalities. The ECUs perform real-time information

exchange, such as automotive instructions over the Controller Area

Network (CAN) bus. However, the CAN bus architecture supports

very limited security features. Thus, in-vehicle communications

over CAN are vulnerable to critical security threats. Also, as ECUs

are resource-constrained in nature, the continuous message trans-

missions lead to drain out of energy during inter-ECU communica-

tion if the authentication scheme is not cost-effective.

This paper proposes AutoSec, a lightweight scheme, exploiting

low-cost bit-wise XOR and concatenation operations to facilitate

secure and efficient in-vehicle communications for connected vehi-

cles. We show through qualitative analysis that AutoSec preserves

the security properties of message integrity, user authentication

and message confidentiality. We implemented AutoSec on Rasp-

berry Pi 3B+ and performed exhaustive experiments to validate the

security robustness and lightweightness of AutoSec. The results

show that AutoSec reduces the computation time by ∼ 99% and

energy consumption by ∼ 99%.

CCS CONCEPTS
• Security andprivacy→ Security protocols; Symmetric cryp-
tography and hash functions.

KEYWORDS
Controller area network, Electronic control unit, In-vehicle net-

works, User authentication, Message integrity, Vehicle security;

ACM Reference Format:
Trupil Limbasiya, Amrita Ghosal, and Mauro Conti. 2021. AutoSec: Secure

Automotive Data Transmission Scheme for In-Vehicle Networks. In ICDCN
’22: ACM International Conference on Distributed Computing and Networking,
January 04–07, 2022, India. ACM, New York, NY, USA, 9 pages. https://doi.

org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICDCN ’22, January 04–07, 2022, India
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The Controller Area Network (CAN) [1] bus technology has become

quite popular in the Intra-Vehicular Networks (IVNs) through its

wide-spread deployment. The CAN provides for broadcast commu-

nication between the different Electronic Control Units (ECUs) in

modern vehicles. Technological developments in recent years have

allowed modern vehicles for accessing cloud services and communi-

cation with other vehicles using mobile cellular connections. These

interfaces not only provide useful services but may also introduce

new attack surfaces, leading to enhanced security vulnerabilities

for the vehicle ECUs. Through the compromised ECU, the attacker

is able to take control of the vehicle that may result in serious con-

sequences, e.g., the attacker can alter the speed of the vehicle or

stop the vehicle altogether [2].

Research works [3] presented that unavailability of security

mechanisms for CAN have resulted in the exposure of IVNs to

the attackers. For example, researchers ran experiments on a Jeep

Cherokee to demonstrate that the remote attacker can easily send

forged messages from the compromised ECUs, that enables it to

take charge of the different vehicular functionalities [4], [5]. An-

other such work [6] revealed the security threats in different BMW

models, including the capability of controlling the connected ECUs

(via CAN) remotely. The CAN is primarily susceptible to attacks by

adversaries due to the absence of encryption techniques and inad-

equate access control. Also, the broadcast nature of the CAN bus

makes it more vulnerable to attacks and access control. The com-

munication between the ECUs and the external networks should

be designed using robust cryptographic techniques, leading to safe-

guarding the IVNs from both internal as well as external adversaries.

For in-vehicle communication, ECUs broadcast messages over

the CAN bus for the management of automotive operations in

autonomous cars [7]. Further, autonomous vehicles are connected

to different components, such as other cars, pedestrians, wireless

sensors, and other smart devices through the dedicated short-range

communication (DSRC), 4G/5G, or Wi-Fi technology for smooth

movement of vehicles on the road. Therefore, it becomes more

important to deliver crucial messages to an ECU for further action(s)

by preserving vital security properties, otherwise it may lead to

severe damage to in-vehicle automotive operations [8]. Hence, in

this work, we aim to address the important security challenges for

in-vehicle message transmissions, such as (i) verification of sender

(ii) message confidentiality (iii) data correctness. We identify the

key security problems associated with CAN, as follows.

• Since the identity of a sender is unknown, and the sender’s

authenticity cannot be verified in CAN, an adversary can

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

masquerade any ECUwith a similarmessage identifier. Hence,

each ECU connected with the CAN bus can apply a masquer-

ade attack in the system to affect the vehicle functions [9], [10].

• ECUs are connected over the CAN bus for supporting various

automotive services in a vehicle. And CAN is associated

with wireless interfaces over a gateway ECU that enables

adversaries for launching attacks without gaining access to

a vehicle, as demonstrated in [5], [6], [11]. Furthermore, it

cannot be guaranteed that the compromised/other ECUs are

always monitored in CAN. Hence, an adversary can send

false messages, misleading the CAN bus [12].

• Messages are broadcast in CAN without using any encryp-

tion. All ECUs connected with the CAN bus can listen to

any of the messages. This may lead to data confidentiality

problems or allow adversary to inject false data into the

system [13].

Considering the security shortcomings associated with CAN,

an adversary can make an attempt of stealing cars, deactivating

automotive systems, sending erroneous messages, and obscuring

defective functionalities [3]. Therefore, it is essential to preserve

the important security properties during message exchange in au-

tonomous vehicles.

Contributions: We propose a secure lightweight scheme for CAN

data transmission in autonomous vehicles. Our contributions in

this paper are three folds.

• We propose a secure lightweight scheme, AutoSec for secure

data transmission over CAN that preserves the security prop-

erties of message integrity, user authentication and message

confidentiality. For efficient computation and verification,

we use SHA-512, bit-wise XOR, and concatenation on ECUs

having limited processing power.

• We analyze AutoSec to confirm its security robustness to

satisfy message integrity, user authentication, message con-

fidentiality, and session key attacks.

• We evaluate the performance of AutoSec in terms of the

overheads, i.e, computation time, energy consumption, and

communication overhead. Experimental results show that

AutoSec significantly improves computation time and energy

consumption compared to other relevant existing works.

Organization: The rest of the work is organized as follows. Sec-

tion 2 discusses the related works. Section 3 presents the system

overview, the adversary model and the security requirements of

the proposed protocol AutoSec. We introduce the proposed scheme

AutoSec in Section 4. Section 5 provides a comprehensive secu-

rity analysis of AutoSec. In Section 6, we present the performance

evaluation of AutoSec. Finally, we conclude the work in Section 7.

2 RELATEDWORKS
Many schemes were reported with an objective for securing the

communication in IVNs. We present here some of the works more

relevant in our context.

Ying et al. [14] proposed a scheme named TACAN (Transmit-

ter Authentication in CAN) for providing secure authentication of

the ECUs on the CAN bus using the concept of covert channels.

Here no additional bits or CAN messages are used and there are no

modifications in the CAN protocol. TACAN utilizes the concept of

covert channel for developing a defensive technique for enabling

transmitter authentication by means of a centralized, trusted mon-

itor node. TACAN is composed of three covert channels that are

used for ECU authentication. The authors implemented TACAN on

the University of Washington’s EcoCAR (Chevrolet Camaro 2016)

testbed [15]. Thorough evaluation was also done considering the

bit error, throughput and detection performance of TACAN. The

results demonstrate that TACAN has high effectiveness in detect-

ing CAN bus attacks and attesting the general functionalities of

ECUs. As this scheme is based on shared cryptographic keys and

inter-arrival times, which lead to computational overhead. Also,

the security level is reduced that makes it insufficient for present

day requirements.

Frame authentication in CAN is usually likely in a restrictive

manner mainly due to decreased bandwidth, low payload and con-

strains for computational resources. To overcome this problem, the

authors in [3] proposed a method where the identity of the actual

sender was determined through observation in differences of the

CAN signal. This scheme has the ability of lessening the required

resources to a significant extent and having high identification

rates of 99.98%. The authors compared their scheme with the most

lightweight scheme to produce reduced memory footprints and

computational requirements. The scheme also has the capability

of adapting to incremental signal changes during operation. This

work has been evaluated on a prototype as well as two production

vehicles under changing conditions over a time frame of one week

using various electronic consumers. However, this scheme requires

a powerful analog-to-digital converter and high computation capa-

bilities. This significantly enhances the implementation costs, that

has an important impact on the automotive industry.

Palaniswamy et al. [18] analyzed the present frame-level authen-

tication protocol for the CAN bus for identifying the weaknesses

and the limitations. The authors provide a protocol suite for entity

authentication, key management, secure message flow for remote

transmission request frames and session key update required for

vehicle communication with external devices. The security of the

proposed protocol is determined using the random oracle model

and judges its defensive capabilities against known attacks. The sim-

ulation results demonstrate the efficiency of the protocol compared

to other existing schemes.

The authors in [8] use a real vehicle and malicious smartphone

application for demonstrating that a long-range wireless attack is

feasible in a connected car environment. They propose a security

protocol for CAN that is designed according to the present CAN

specifications. The proposed security protocol is evaluated using

CANoe software and a DSP-F28335micro-controller. The evaluation

results show the effectiveness of the proposed security protocol

with respect to authentication delay and communication load. The

main disadvantage of this technique is that as the application runs

on a mobile device, therefore, there is a possibility that attacks can

be launched through the cellular network.

The work in [16] proposes a novel and efficient scheme during

the system design stage for providing optimal security and safety.

The design optimization guarantees that execution of every real

time applications takes place within the deadline as well as reduc-

tion in the number of transmission messages over the CAN bus.

After the optimization operation, the authors apply a hash message

2

Steering
System ECU

Axle
ECU

GECU

Engine
ECU

Active
Adversary

Braking
System ECU

Passive
Adversary

Cooling
System ECU

Malicious
ECU

CAN High
CAN Low

Telematics OBD-II

Figure 1: System model for automotive in-vehicle communication over the CAN bus.

authentication code on particular messages for ensuring secure

communication between the ECUs and protection against cyber at-

tacks. The security analysis together with the experimental results

prove the efficacy of the proposed scheme in terms of countering

attacks on the CAN bus in a timely manner. Though this technique

uses selective message authentication that can reduce communica-

tion overhead on automotive CAN, but introduces delay generating

from the transmission of an extra packet.

Groza et al. [17] authenticate the identifiers of the CAN frames

using an ordered CMAC buffer and verify the legitimacy of the

sender node. Also, the authors consider the real-world scenarios

and show that the achieved security level is very close to the length

of the ID field in spite of the constraints arising due to ordering.

The procedure adapted in [17] is able to evade replay attacks as

well fuzz testing on the bus. The authors carry out practical imple-

mentations on automotive-grade microcontrollers and CAN-bus

traffic allotments from a high-end vehicle. The computational re-

quirements [17] for securing the CAN bus are also quite low.

3 SYSTEM OVERVIEW
In this section, we present the systemmodel and background knowl-

edge on which we base our work. Specifically, Section 3.1 discusses

the system architecture. We then introduce the adversary model in

Section 3.2 with the adversary’s objectives and capabilities. Finally,

Section 3.3 presents the security requirements.

3.1 System Architecture
The system model is illustrated with an objective to understand the

general outline of in-vehicle communications with the functionality

of different entities. Figure 1 shows a basic overview of in-vehicle

networks in which the Gateway ECU (GECU) and different types

of ECUs are connected via a single CAN bus [3], [8], [18], [19]. We

describe the role of each component, as follows.

• GECU : It is a main ECU that connects the outer world with

the in-vehicle networks as intermediaries. And it is con-

nected with telematics and On-Board Diagnostic-II (OBD-II)

to perform different functionalities in a vehicle. It acts as the

central authority to establish/update the session key among

the ECUs and keeps a record of IDs of all the installed ECUs.

• ECU : Each ECU collects the data from sensors (attached with

automobile parts, such as engine, braking system, gearbox,

cooling system, axle, steering system, etc.) to broadcast rel-

evant messages with other ECUs and GECU over the CAN

bus. Since an ECU is configured with low processing power,

it takes more time to execute advanced cryptographic opera-

tions that satisfy a high-level of security.

• Adversary: The system mainly includes two types of adver-

saries, i.e., internal and external, that can introduce passive

and active attacks during in-vehicle communications. Here, a

malicious ECU means that it is a legal component of the sys-

tem, but it is attempting to forge messages during in-vehicle

communications. Section 3.2 discusses the objectives of the

adversaries.

3.2 Adversary Model
CAN messages are broadcast to all ECUs over the CAN bus, and it

is demonstrated in [5], [6], [11] that adversaries can connect to the

automotive connected system via local or remote access. Accord-

ingly, we consider the following intentions of an adversary, who

aims to perform malicious activities on in-vehicle communications.

• An adversary wants to intercept or interrupt the in-vehicle

communications for various objectives, such as stop transmit-

ting vital information, trace vehicle users, modify messages,

delay real-time data, disseminate erroneous/bogus messages,

miss essential messages, access the systemmessages without

being a legal user, and understand communication messages.

The ultimate aim of an adversary is to apply remote attacks

on in-vehicle communications to disrupt the functionalities.

• An adversary attempts to reduce the performance efficiency

of the CAN bus by sending multiple dummy messages over

it. Thus, all ECUs become busy for verifying the correctness

of the multiple messages received.

We consider the following assumptions, assuming the adver-

sary’s security capabilities [1], [8].

• All ECUs are directly connected with a gateway ECU (which

is associated with wireless interfaces for purposes of dif-

ferent functionalities) that leverages an adversary to inject

erroneous messages into the CAN bus.

3

• An adversary can periodically send multiple messages over

CAN within a short period of time to create confusion, i.e.,

based on which instructions, the receiver ECU should pro-

ceed further. As a result, it leads to a problem of the over-

written messages over the CAN bus.

• An adversary can send multiple messages intentionally in

the CAN bus to increase the verification overhead at the

receiver. Thus, the ECU gets disconnected from the bus.

• If anymalicious ECU is connected to the CAN bus, then it can

broadcast frames on the CAN bus. Hence, an adversary can

launch different malicious activities on in-vehicle network.

• We consider that an adversary knows the design and specifi-

cations of the targeted automotive system.

3.3 Security Requirements
Our objective is preserving the important security properties of in-

vehicle communication by achieving authentication, integrity, and

confidentiality. This is attained through the secret group key com-

munication and unmodifiable identifier to prove the sender while

computing messages using one-way hash function to preserve in-

tegrity and confidentiality. Considering these security properties,

the proposed scheme can protect from unauthorized access of mes-

sages, message alteration, and data impersonation. We discuss the

importance of different security properties in CAN, as follows.

• Authentication:Whenmessages are sent into the CAN, the

receiver extracts the sender through the sender ID (present

in the data frame), and there is no verification mechanism to

confirm the sender in CAN. If any compromised/malicious

ECU has used the sender ID of another ECU for forgery,

then also it is difficult to know the original sender of the

forged messages. Hence, authentication plays a critical role

in CAN for verifying the sender of the messages to prevent

transmission of illegal messages.

• Integrity:Messages are sent in plain-text in CAN, and only

CRC checksum is not adequate to check the correctness of

CAN messages because an adversary can manage to replace

the CRC information correspondingly. As a consequence,

ECUs may follow modified messages to control the function-

alities, resulting in accidents. Hence, it is better to confirm

the accuracy of the CAN messages before proceeding.

• Confidentiality:Messages are broadcast on the CAN as per

the CAN standard. Thus, at least all ECUs connected to the

CAN bus get these transmitted messages, which leads to the

disclosure of important information. Therefore, the system

should maintain the message confidentiality while sending

it over the CAN bus.

4 THE PROPOSED SCHEME: AUTOSEC
Autonomous vehicles are fully dependent on the on-time and accu-

rate functionality of automotive operations. Thereby, it is indispens-

able to transmit crucial information (i.e., automotive instructions)

securely and efficiently between the GECU and ECUs to quickly

take better decision(s) while a vehicle on the move. The existing

protocols for in-vehicle communications cannot withstand crucial

security issues, such as session key update leakage, presence of

authentication attacks, private key storage concern, and encryption

key compromising. Moreover, they are designedwith comparatively

high cost and more number of operations, taking more time for

the execution. Modern vehicles are enabled more features, such as

telematics, advanced driver assistance systems, and infotainment.

Thereby, the required number of ECUs in each vehicle is also in-

creased that needs to perform more computational operations by

ECUs. Hence, it is necessary to design the protocol that takes less

computation time while performing various operations.

We propose a secure data transmission scheme (named as Au-
toSec) using SHA-512, bit-wise XOR (⊕), and concatenation (| |) for
secure and cost-effective data exchanges, preserving the vital infor-

mation from different security threats. Since AutoSec is designed to

protect in-vehicle message communication with low-cost crypto-

graphic operations, it does not require any hardware modifications

and network improvements. Hence, the proposed scheme can be

applied to the existing CAN architecture easily. The AutoSec mainly

consists of two phases: (i) basic setup and (ii) message communica-

tion protocols. We discuss the basic setup procedure for AutoSec

in Section 4.1 to generate and load long-term keys in ECUs. In

Section 4.2, we provide an elaborate discussion of the secure com-

munication protocol associated with AutoSec. Table 1 describes the

various notations used in the design of AutoSec.

Table 1: List of Symbols with its Description

Symbol Description
𝐸𝐶𝑈𝑖 𝑖𝑡ℎ electronic control unit (ECU)

𝐺𝐸𝐶𝑈 Gateway ECU

𝐼𝐷𝐸𝐶𝑈𝑖
Identity of 𝐸𝐶𝑈𝑖

𝐸𝐶𝑈𝑟 Any one ECU out of all ECUs, who requires some information

𝐸𝐶𝑈𝑠 Any one ECU out of all ECUs, who sends some information to 𝐸𝐶𝑈𝑟
𝐾𝑖 Long-term pre-loaded symmetric key between 𝐸𝐶𝑈𝑖 and 𝐺𝐸𝐶𝑈

𝐺𝐾 Long-term pre-loaded symmetric key between all 𝐸𝐶𝑈𝑠 and 𝐺𝐸𝐶𝑈

𝐾𝑟𝑠 Long-term pre-loaded symmetric key between 𝐸𝐶𝑈𝑟 and 𝐸𝐶𝑈𝑠
𝑟𝑖/𝑠𝑖/𝑝𝑖/𝑥𝑖 Random nonce

𝐾𝐷𝐹𝑥 () Key derivation function using 𝑥 as key

𝐸𝐾𝑖/𝐴𝐾𝑖 Generated keys from 𝐾𝐷𝐹𝑥 for 𝐸𝐶𝑈𝑖 to distribute the session key

𝐸𝐾𝑟𝑠/𝐴𝐾𝑟𝑠 Generated keys from 𝐾𝐷𝐹𝑥 for communication between 𝐸𝐶𝑈𝑟 and 𝐸𝐶𝑈𝑠
ℎ(·) One-way hash function (i.e., SHA-512)

Δ𝑇 The maximum time delay

𝑇𝑖1/𝑇𝑖3 Current time-stamp at 𝐸𝐶𝑈𝑖
𝑇𝑖2/𝑇𝑖4 Current time-stamp at 𝐺𝐸𝐶𝑈

𝑀 Message for data exchange

4.1 AutoSec: Basic Setup
GECU (acting as the central ECU) registers with the Road Transport

Authority (RTA) so that it can execute different operations in the

in-vehicle networks. A list of IDs and respective long-term keys

of all installed ECUs are securely stored in the protected memory

of GECU. All ECUs are initially loaded with long-term keys (𝐾𝑖 ,

𝐺𝐾 , and 𝐾𝑟𝑠) in tamper-resistant trusted platform modules [20].

To verify the integrity of the firmware, 𝐸𝐶𝑈𝑖 computes a firmware

digest 𝐻 (𝐾𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖
| |𝐼𝑚𝑎𝑔𝑒𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒) and sends it to the GECU.

After receiving it, the GECU confirms the receipt of the firmware

digest with the computed value for validation.

4.2 AutoSec: Message Communication Protocol
ECUs are attached with different automobile components of a ve-

hicle to exchange real-time information among the ECUs over the

CAN bus for automotive operations. This phase comprises of three

4

protocols: (i) Initial Session Key Computation and Verification Pro-

tocol (ISCVP), (ii) Remote Frame Transmission Request Protocol

(RFTRP), and (iii) Session Key Update Protocol (SKUP). We describe

these protocols in details, as follows.

4.2.1 Proposed ISCVP. Each ECU performs the following steps

with the GECU for initial session key computation and verification

procedure. Since a vehicle contains multiple ECUs, this process

is performed with the GECU in a fixed order. This process is also

shown in Figure 2.

(1) 𝐸𝐶𝑈𝑖 generates a random nonce (say 𝑟𝑖) to compute 𝐴𝑖 =

ℎ(𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑇𝑖1 | |𝐾𝑖) ⊕ 𝑟𝑖 , where 𝑇𝑖1 is a current time-stamp.

𝐸𝐶𝑈𝑖 sends {𝐴𝑖 ,𝑇𝑖1} as a request to GECU for the initial

session key computation and verification.

(2) The GECU checks the freshness of the received request by

𝑇𝑖2 − 𝑇𝑖1 ≤ Δ𝑇 , where 𝑇𝑖2 is the request receiving time-

stamp. If it holds, then the GECU computes 𝑟𝑖 = 𝐴𝑖 ⊕
ℎ(𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑇𝑖1 | |𝐾𝑖), 𝐵𝑖 = ℎ(𝐾𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑟𝑖) ⊕ 𝑠𝑖 , and 𝐶𝑖 =

ℎ(𝑟𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑠𝑖) to send {𝐵𝑖 ,𝐶𝑖 ,𝑇𝑖2} as a response to 𝐸𝐶𝑈𝑖

for the key computation.

(3) 𝐸𝐶𝑈𝑖 verifies the validity of a response through 𝑇𝑖3 −𝑇𝑖2 ≤
Δ𝑇 , where 𝑇𝑖3 is the response receiving time-stamp. If it

holds, then 𝐸𝐶𝑈𝑖 calculates 𝑠
′
𝑖
= ℎ(𝐾𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑟𝑖) ⊕𝐵𝑖 ,𝐶 ′𝑖 =
ℎ(𝑟𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑠 ′
𝑖
) and confirms 𝐶 ′

𝑖

?

= 𝐶𝑖 . If both are equal,

then 𝐸𝐶𝑈𝑖 computes 𝐾𝐷𝐹𝐺𝐾 (𝑠𝑖 | |𝑟𝑖) = (𝐸𝐾𝑖 | |𝐴𝐾𝑖) and 𝐷𝑖 =
ℎ(𝐸𝐾𝑖 | |𝑠𝑖 | |𝐴𝐾𝑖 | |𝑟𝑖 | |𝑇𝑖3) to send {𝐷𝑖 ,𝑇𝑖3} to GECU as the key

verification.

(4) The GECU confirms the freshness of {𝐷𝑖 ,𝑇𝑖3} by calculating

𝑇𝑖4 −𝑇𝑖3 ≤ Δ𝑇 , where 𝑇𝑖4 is the key verification message re-

ceiving time-stamp. The GECU computes 𝐾𝐷𝐹𝐺𝐾 (𝑠𝑖 | |𝑟𝑖) =
(𝐸𝐾𝑖 | |𝐴𝐾𝑖), 𝐷 ′𝑖 = ℎ(𝐸𝐾𝑖 | |𝑠𝑖 | |𝐴𝐾𝑖 | |𝑟𝑖 | |𝑇𝑖3) to check the legal-

ity of {𝐷𝑖 ,𝑇𝑖3} by comparing 𝐷 ′
𝑖
with 𝐷𝑖 . If it holds, then it is

considered as a valid key computation.

ECUi GECU
Takes 𝑟𝑖 and 𝑇𝑖1
𝐴𝑖 = ℎ(𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑇𝑖1 | |𝐾𝑖) ⊕ 𝑟𝑖 {
𝐴𝑖 ,𝑇𝑖1

}
−−−−−−−→

Checks 𝑇𝑖2 −𝑇𝑖1 ≤ Δ𝑇
𝑟𝑖 = 𝐴𝑖 ⊕ ℎ(𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑇𝑖1 | |𝐾𝑖)
𝐵𝑖 = ℎ(𝐾𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑟𝑖) ⊕ 𝑠𝑖
𝐶𝑖 = ℎ(𝑟𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑠𝑖){
𝐵𝑖 ,𝐶𝑖 ,𝑇𝑖2

}
←−−−−−−−−−

Checks 𝑇𝑖3 −𝑇𝑖2 ≤ Δ𝑇
𝑠 ′
𝑖
= ℎ(𝐾𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑟𝑖) ⊕ 𝐵𝑖
Compute 𝐶 ′

𝑖
and Verify it with 𝐶𝑖

𝐾𝐷𝐹𝐺𝐾 (𝑠𝑖 | |𝑟𝑖) = (𝐸𝐾𝑖 | |𝐴𝐾𝑖)
𝐷𝑖 = ℎ(𝐸𝐾𝑖 | |𝑠𝑖 | |𝐴𝐾𝑖 | |𝑟𝑖 | |𝑇𝑖3) {

𝐷𝑖 ,𝑇𝑖3

}
−−−−−−−→

Checks 𝑇𝑖4 −𝑇𝑖3 ≤ Δ𝑇
𝐾𝐷𝐹𝐺𝐾 (𝑠𝑖 | |𝑟𝑖) = (𝐸𝐾𝑖 | |𝐴𝐾𝑖)
𝐷𝑖 = ℎ(𝐸𝐾𝑖 | |𝑠𝑖 | |𝐴𝐾𝑖 | |𝑟𝑖 | |𝑇𝑖3)
Verify 𝐷𝑖

Figure 2: AutoSec: ISCVP Design Description

4.2.2 Proposed RFTRP. When an ECU (say 𝐸𝐶𝑈𝑟) requires some

information from another ECU (say 𝐸𝐶𝑈𝑠), the receiver ECU (𝐸𝐶𝑈𝑟)

sends a request to the sender ECU (𝐸𝐶𝑈𝑠) to establish a connection

for data exchange between them. The RFTRP procedure is displayed

in Figure 3 to confirm the legitimacy of both (𝐸𝐶𝑈𝑠 and 𝐸𝐶𝑈𝑟) and

the messages sent by each before connection for data transmission.

(1) 𝐸𝐶𝑈𝑟 takes a random nonce, 𝑝𝑖 and computes 𝑃𝑟𝑠 = 𝑝𝑖 ⊕
ℎ(𝐼𝐷𝐸𝐶𝑈𝑠

| |𝑇𝑖1 | |𝐾𝑟𝑠),𝑄𝑟𝑠 =ℎ(𝑅𝑇𝑅𝐹𝑟𝑎𝑚𝑒 | |𝑇𝑖1 | |𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑠
| |𝑝𝑖)

to send {𝐼𝐷𝐸𝐶𝑈𝑟
, 𝑃𝑟𝑠 , 𝑄𝑟𝑠 ,𝑇𝑖1} as a request to 𝐸𝐶𝑈𝑠 .

(2) After getting it, 𝐸𝐶𝑈𝑠 confirms its freshness through 𝑇𝑖2 −
𝑇𝑖1 ≤ Δ𝑇 , where 𝑇𝑖2 is the request receiving time-stamp.

𝐸𝐶𝑈𝑠 calculates 𝑝
′
𝑖
= ℎ(𝐼𝐷𝐸𝐶𝑈𝑠

| |𝑇𝑖1 | |𝐾𝑟𝑠) ⊕𝑃𝑟𝑠 and 𝑄 ′𝑟𝑠 =

ℎ(𝑅𝑇𝑅𝐹𝑟𝑎𝑚𝑒 | |𝑇𝑖1 | |𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑠
| |𝑝 ′
𝑖
) to confirm the legality

of a request through𝑄 ′𝑟𝑠
?

= 𝑄𝑟𝑠 . If it matches, then 𝐸𝐶𝑈𝑠 pro-

ceeds to compute 𝐾𝐷𝐹𝐺𝐾 (𝑝𝑖 | |𝐾𝑟𝑠) = (𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠), 𝑅𝑟𝑠 =

ℎ(𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠 | |𝑄𝑟𝑠 | |𝑇𝑖2), and𝐶𝑇𝑟𝑠 = ℎ(𝑅𝑟𝑠 | |𝑝𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑠
)⊕𝑀

to send a response as {𝐶𝑇𝑟𝑠 , 𝑅𝑟𝑠 ,𝑇𝑖2}.

(3) 𝐸𝐶𝑈𝑟 checks the validity of a response message through𝑇𝑖3−
𝑇𝑖2 ≤ Δ𝑇 , where 𝑇𝑖3 is the response receiving time-stamp.

𝐸𝐶𝑈𝑟 computes 𝐾𝐷𝐹𝐺𝐾 (𝑝𝑖 | |𝐾𝑟𝑠) = (𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠) and 𝑅′𝑟𝑠 =
ℎ(𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠 | |𝑄𝑟𝑠 | |𝑇𝑖2) to verify its legality bymatching𝑅′𝑟𝑠
with 𝑅𝑟𝑠 . If both are equal, then 𝐸𝐶𝑈𝑟 retrieves a message

as𝑀 = 𝐶𝑇𝑟𝑠 ⊕ ℎ(𝑅𝑟𝑠 | |𝑝𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑠
).

ECUs ECUr
𝑃𝑟𝑠 = ℎ(𝐼𝐷𝐸𝐶𝑈𝑠

| |𝑇𝑖1 | |𝐾𝑟𝑠) ⊕ 𝑝𝑖
𝑄𝑟𝑠 = ℎ(𝑅𝑇𝑅𝐹𝑟𝑎𝑚𝑒 | |𝑇𝑖1 | |𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑠

| |𝑝𝑖){
𝐼𝐷𝐸𝐶𝑈𝑟 ,𝑃𝑟𝑠 ,𝑄𝑟𝑠 ,𝑇𝑖1

}
←−−−−−−−−−−−−−−−−−−

Checks 𝑇𝑖2 −𝑇𝑖1 ≤ Δ𝑇
𝑝 ′
𝑖
= 𝑃𝑟𝑠 ⊕ ℎ(𝐼𝐷𝐸𝐶𝑈𝑠

| |𝑇𝑖1 | |𝐾𝑟𝑠)
𝑄 ′𝑟𝑠 = ℎ(𝑅𝑇𝑅𝐹𝑟𝑎𝑚𝑒 | |𝑇𝑖1 | |𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑠

| |𝑝 ′
𝑖
)

Verify 𝑄 ′𝑟𝑠 with 𝑄𝑟𝑠
𝐾𝐷𝐹𝐺𝐾 (𝑝𝑖 | |𝐾𝑟𝑠) = (𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠)
𝑅𝑟𝑠 = ℎ(𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠 | |𝑄𝑟𝑠 | |𝑇𝑖2)
𝐶𝑇𝑟𝑠 = ℎ(𝑅𝑟𝑠 | |𝑝𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑠

) ⊕ 𝑀 {
𝐶𝑇𝑟𝑠 ,𝑅𝑟𝑠 ,𝑇𝑖2

}
−−−−−−−−−−−−→

Checks 𝑇𝑖3 −𝑇𝑖2 ≤ Δ𝑇
𝐾𝐷𝐹𝐺𝐾 (𝑝𝑖 | |𝐾𝑟𝑠) = (𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠)
𝑅′𝑟𝑠 = ℎ(𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠 | |𝑄𝑟𝑠 | |𝑇𝑖2)
Verify 𝑅′𝑟𝑠 with 𝑅𝑟𝑠
𝑀 = 𝐶𝑇𝑟𝑠 ⊕ ℎ(𝑅𝑟𝑠 | |𝑝𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑠

)

Figure 3: AutoSec: RFTRP Design Description

4.2.3 Proposed SKUP. The session key between 𝐸𝐶𝑈𝑖 and𝐺𝐸𝐶𝑈

is periodically updated to improve the security in the system with

a fresh computed session key. However, if we follow the SKUP

protocol of [18], then it makes availability of the fresh session key

(of 𝐸𝐶𝑈𝑖) to all connected ECUs effortlessly. Hence, we design an

enhanced SKUP to address this present issue of the session key

update process, as follows. The proposed SKUP is also described in

Figure 4.

(1) GECU proceeds to calculate 𝑋𝑖 = ℎ(𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑇𝑖1 | |𝐾𝑖 | |𝐺𝐾) ⊕

𝑥𝑖 ,𝑌𝑖 =ℎ(𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑥𝑖 | |𝐼𝐷𝐺𝐸𝐶𝑈), and𝐾𝐷𝐹𝐺𝐾 (𝑥𝑖 | |𝐾𝑖) =

(𝐸𝐾𝑘+1 | |𝐴𝐾𝑘+1) to initiate a procedure for the session key

update. After that, GECU sends {𝐼𝐷𝐸𝐶𝑈𝑖
, 𝑋𝑖 , 𝑌𝑖 ,𝑇𝑖1} to 𝐸𝐶𝑈𝑖

as the session key update initialization.

5

(2) 𝐸𝐶𝑈𝑖 first checks the validity of {𝐼𝐷𝐸𝐶𝑈𝑖
,𝑋𝑖 , 𝑌𝑖 ,𝑇𝑖1} through

𝑇𝑖2 − 𝑇𝑖1 ≤ Δ𝑇 , where 𝑇𝑖2 = initialization message receiv-

ing time-stamp. If it holds, then 𝐸𝐶𝑈𝑖 computes 𝑥𝑖 = 𝑋𝑖 ⊕
ℎ(𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑇𝑖1 | |𝐾𝑖 | |𝐺𝐾), 𝑌 ′𝑖 = ℎ(𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑥 ′
𝑖
| |𝐼𝐷𝐺𝐸𝐶𝑈)

to confirm 𝑌 ′
𝑖

?

= 𝑌𝑖 . If both are equal, then 𝐸𝐶𝑈𝑖 sends

{𝑍𝑖 ,𝑇𝑖2} as a response to GECU, where 𝐾𝐷𝐹𝐺𝐾 (𝑥𝑖 | |𝐾𝑖) =

(𝐸𝐾𝑘+1 | |𝐴𝐾𝑘+1), 𝑍𝑖 = ℎ(𝑥𝑖 | |𝐸𝐾𝑘+1 | |𝑇𝑖2 | |𝐴𝐾𝑘+1 | |𝑌𝑖).
(3) Upon the receiving {𝑍𝑖 ,𝑇𝑖2}, GECU checks its freshness by

𝑇𝑖3 −𝑇𝑖2 ≤ Δ𝑇 , where 𝑇𝑖3 = response receiving time-stamp.

If it is valid, then only GECU computes 𝐾𝐷𝐹𝐺𝐾 (𝑥𝑖 | |𝐾𝑖) =
(𝐸𝐾𝑘+1 | |𝐴𝐾𝑘+1) and 𝑍 ′𝑖 = ℎ(𝑥𝑖 | |𝐸𝐾𝑘+1 | |𝑇𝑖2 | |𝐴𝐾𝑘+1 | |𝑌𝑖) to
verify the legality of the updated session key by 𝑍 ′

𝑖

?

= 𝑍𝑖 . If

it matches, the session key is updated successfully.

ECUi GECU
𝑋𝑖 = ℎ(𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑇𝑖1 | |𝐾𝑖 | |𝐺𝐾) ⊕ 𝑥𝑖
𝑌𝑖 = ℎ(𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑥𝑖 | |𝐼𝐷𝐺𝐸𝐶𝑈)
𝐾𝐷𝐹𝐺𝐾 (𝑥𝑖 | |𝐾𝑖) = (𝐸𝐾𝑘+1 | |𝐴𝐾𝑘+1){

𝐼𝐷𝐸𝐶𝑈𝑖
,𝑋𝑖 ,𝑌𝑖 ,𝑇𝑖1

}
←−−−−−−−−−−−−−−−−

Checks 𝑇𝑖2 −𝑇𝑖1 ≤ Δ𝑇
𝑥𝑖 = 𝑋𝑖 ⊕ ℎ(𝐼𝐷𝐸𝐶𝑈𝑖

| |𝑇𝑖1 | |𝐾𝑖 | |𝐺𝐾)
Compute and Verify 𝑌𝑖
𝐾𝐷𝐹𝐺𝐾 (𝑥𝑖 | |𝐾𝑖) = (𝐸𝐾𝑘+1 | |𝐴𝐾𝑘+1)
𝑍𝑖 = ℎ(𝑥𝑖 | |𝐸𝐾𝑘+1 | |𝑇𝑖2 | |𝐴𝐾𝑘+1 | |𝑌𝑖) {

𝑍𝑖 ,𝑇𝑖2

}
−−−−−−−→

Checks 𝑇𝑖3 −𝑇𝑖2 ≤ Δ𝑇
𝐾𝐷𝐹𝐺𝐾 (𝑥𝑖 | |𝐾𝑖) = (𝐸𝐾𝑘+1 | |𝐴𝐾𝑘+1)
𝑍 ′
𝑖
= ℎ(𝑥𝑖 | |𝐸𝐾𝑘+1 | |𝑇𝑖2 | |𝐴𝐾𝑘+1 | |𝑌𝑖)

Verify 𝑍𝑖

Figure 4: AutoSec: SKUP Design Description

5 SECURITY ANALYSIS
We perform security analysis on the proposed protocols to verify

their security robustness against crucial security attributes. We

discuss the related definitions, theorems, and their respective proofs

based on the Random Oracle Model (ROM) for AutoSec. In this, a

game is constructed between an adversary (A) and the challenger

(C) to confirm whether A can win a game with a non-negligible

probability for the given challenges by C in polynomial time or

not [21]. We also present a comparison table to understand the

security features of the existing schemes.

Definition:The proposed protocols are secure in the constructed
game if A has trivial advantage(s) in polynomial time.

RFTRP— Oracle:We consider thatA is acting as ECUs and wants
to send bogus/modified responsemessage for

{
𝐼𝐷𝐸𝐶𝑈𝑟

, 𝑃𝑟𝑠 , 𝑄𝑟𝑠 ,𝑇𝑖1
}
.

Thus, A sends

{
𝐶𝑇A
𝑟𝑠 , 𝑅

A
𝑟𝑠 ,𝑇

A
𝑖2

}
to ECUr. In the proposed RFTRP

protocol, ECUr (acting as C) confirms the freshness of the received

message through 𝑇𝑖3 −𝑇𝑖2 ≤ Δ𝑇 and verifies the received 𝑅𝑟𝑠 with

the computed 𝑅𝑟𝑠 for validation.

SKUP — Oracle: We consider that A is acting as GECU to update

the session key between ECUi and GECU. Thus, ECUi acts as C to

confirm the connectivity with the original GECU while updating

the session key. A sends

{
𝐼𝐷A
𝐸𝐶𝑈𝑖

, 𝑋A
𝑖
, 𝑌A
𝑖
,𝑇A
𝑖1

}
to ECUi. In the

proposed SKUP design, the validity and legality are verified by Δ𝑇
and 𝑌𝑖 respectively at ECUi side to confirm the authenticity. If it

holds, then only ECUi sends
{
𝑍𝑖 ,𝑇𝑖2

}
to the requested ECU. At

the receiver side, it is also confirmed to verify the correctness of

exchanges parameters.

Theorem-1: The proposed protocols can withstand message

integrity based attacks by considering the ROM.

Proof. We assume that an adversary (A) wants to send a modi-

fied/bogus message response to ECUr (acts as C) for
{
𝐼𝐷𝐸𝐶𝑈𝑟

, 𝑃𝑟𝑠 ,

𝑄𝑟𝑠 , 𝑇𝑖1
}
without knowledge of ECUs during the RFTRP phase.

Therefore, A should compute 𝑅𝑟𝑠 [= ℎ(𝐸𝐾𝑟𝑠 | |𝐴𝐾𝑟𝑠 | |𝑄𝑟𝑠 | |𝑇𝑖2)] and
𝐶𝑇𝑟𝑠 [= 𝑀 ⊕ ℎ(𝑅𝑟𝑠 | |𝑝𝑖 | |𝐼𝐷𝐸𝐶𝑈𝑠

)]. We consider, an adversary gets

𝑃𝑟𝑠 and𝑄𝑟𝑠 from a common communication channel, butA cannot

compute 𝐾𝑟𝑠 (only known to 𝐸𝐶𝑈𝑠 and 𝐸𝐶𝑈𝑟) and 𝑝𝑖 (unavail-

ability of all required values). Consequently, A cannot calculate

𝑅𝑟𝑠 and 𝐶𝑇𝑟𝑠 correctly. In addition, if A sends

{
𝐶𝑇A
𝑟𝑠 , 𝑅

A
𝑟𝑠 ,𝑇

A
𝑖2

}
to

ECUr, then C verifies through 𝑇𝑖3 −𝑇A
𝑖2
≤ Δ𝑇 and 𝑅𝑟𝑠 with 𝑅

A
𝑟𝑠 . A

specifically fails to prove message legality in 𝑅𝑟𝑠
?

= 𝑅A𝑟𝑠 verification

if s/he has done any modification(s) in computation parameters.

Thus, A has no opportunity to do any change(s) during message

transmissions in the proposed RFTRP. □

Theorem-2: The proposed schemes preserve the property of

user authentication.

Proof. A can attempt to infringe the authentication property

by impersonating either 𝐸𝐶𝑈𝑟 or 𝐸𝐶𝑈𝑠 in the proposed RFTRP.

To impersonate 𝐸𝐶𝑈𝑟 ,A should send valid computed parameters

to 𝐸𝐶𝑈𝑠 so that the receiving entity can proceed further after the

verification. IfA sends forged parameters to 𝐸𝐶𝑈𝑠 , then the request

is discarded due to the verification failure in 𝑄 ′𝑟𝑠
?

= 𝑄𝑟𝑠 . In the

proposed RFTRP, A should calculate 𝑃A𝑟𝑠 , 𝑄
A
𝑟𝑠 to send

{
𝐼𝐷𝐸𝐶𝑈𝑟

,

𝑃A𝑟𝑠 , 𝑄
A
𝑟𝑠 , 𝑇

A
𝑖1

}
to 𝐸𝐶𝑈𝑠 , but A does not know/have 𝐾𝑟𝑠 (which is

known only to 𝐸𝐶𝑈𝑟 and 𝐸𝐶𝑈𝑠 .). Thus, A cannot proceed further

to impersonate 𝐸𝐶𝑈𝑟 in the proposed RFTRP.

To launch an impersonation attack on 𝐸𝐶𝑈𝑠 , A should know

𝐼𝐷𝐸𝐶𝑈𝑠
and 𝐾𝑟𝑠 because these values are used in the computation

of 𝑃𝑟𝑠 and𝑄𝑟𝑠 . In addition, A needs 𝑝𝑖 (which is selected by 𝐸𝐶𝑈𝑟 .)

to generate 𝐸𝐾𝑟𝑠 and𝐴𝐾𝑟𝑠 . However,A cannot compute all required

values to perform malicious activities in the proposed RFTRP. If

A sends forged parameters (𝐶𝑇A
𝑟𝑠 , 𝑅

A
𝑟𝑠 , and 𝑇

A
𝑖2
) to 𝐸𝐶𝑈𝑟 , then it

is directly identified through Δ𝑇 and 𝑅𝑟𝑠
?

= 𝑅A𝑟𝑠 . Consequently, A

cannot impersonate 𝐸𝐶𝑈𝑠 in the proposed RFTRP. □

Theorem-3: The proposed RFTRP satisfies message confiden-

tiality.

Proof. A is interested to learn transferred message (𝑀) during

the proposed RFTRP. 𝑀 is used in the computation of 𝐶𝑇𝑟𝑠 and

thus, A requires 𝑅𝑟𝑠 , 𝑝𝑖 , 𝐶𝑇𝑟𝑠 , and 𝐼𝐷𝐸𝐶𝑈𝑠
. A can get 𝑅𝑟𝑠 and 𝐶𝑇𝑟𝑠

from

{
𝐶𝑇𝑟𝑠 , 𝑅𝑟𝑠 ,𝑇𝑖2

}
, but it does not know 𝑝𝑖 and 𝐼𝐷𝐸𝐶𝑈𝑠

. And it is

difficult to compute 𝑝𝑖 without knowing𝐾𝑟𝑠 and 𝐼𝐷𝐸𝐶𝑈𝑠
. Therefore,

A cannot get𝑀 due to unavailability of all essential values in the

proposed RFTRP. □

Theorem-4: The proposed scheme is secure against session key

attacks based on the ROM.

6

Table 2: Security Attributes Comparison for CAN Data Transmission Schemes

Security Attributes Woo et al. [8] Palaniswamy et al. [18] AutoSec
Private key storage issue Yes Yes No

Storage table requirement Yes Yes No

Presence of authentication attacks Yes Yes No

Encryption key compromising Yes Yes No

Compatibility of session key No Weak Strong

Session key update leakage Fully Partial No

Session key request verification No ECC based SHA-512 based

Proof. We consider that A wants to update the session key be-

tween 𝐸𝐶𝑈𝑖 and 𝐺𝐸𝐶𝑈 illegally, by acting as 𝐺𝐸𝐶𝑈 . Thus, 𝐸𝐶𝑈𝑖
is the challenger (C) in this case to confirm the genuineness of the re-

ceived parameters.A should compute𝑋𝑖 [= ℎ(𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑇𝑖1 | |𝐾𝑖 | |𝐺𝐾)

⊕𝑥𝑖] and 𝑌𝑖 [= ℎ(𝐺𝐾 | |𝐼𝐷𝐸𝐶𝑈𝑖
| |𝑥𝑖 | |𝐼𝐷𝐺𝐸𝐶𝑈)] to proceed for the

session key updation. We assume that A manages 𝐺𝐾 as an inter-

nal adversary, but s/he does not know 𝐾𝑖 (because only 𝐸𝐶𝑈𝑖 and

𝐺𝐸𝐶𝑈 know 𝐾𝑖 .). Furthermore, A requires 𝑥𝑖 and 𝐾𝑖 to compute

𝑍A
𝑖

to send reply message (i.e.,

{
𝑍𝑖 ,𝑇𝑖2

}
) for the session key update

confirmation. However, 𝐺𝐸𝐶𝑈 confirms computed 𝑍𝑖 (at 𝐺𝐸𝐶𝑈

side) with 𝑍A
𝑖

(sent by A). If any change in mutual parameters,

then 𝑍𝑖
?

= 𝑍A
𝑖

fails in the verification procedure. Hence, A cannot

update the session key between 𝐺𝐸𝐶𝑈 and 𝐸𝐶𝑈𝑖 . □

Table 2 summarizes a comparative analysis for [8], [18], and

AutoSec, showing the security strengths in different attributes. The

schemes in [8] and [18] are designed with the concept of group

key-based authentication, enabling the adversary to launch authen-

tication attacks through a compromised ECU. Furthermore, the

session key can be leaked fully/partially, as the encryption key of

𝑖𝑡ℎ session remains the same for all ECUs in [8] and [18]. Moreover,

a Trusted PlatformModule (TPM) is required in [8] and [18] to store

crucial values, whereas the AutoSec does not have the requirement

of a TPM. Since the AutoSec is designed with one-way hash (i.e.,

SHA-512), and the session key computation values are different for

each ECU in every session, the AutoSec is robust in various security

attributes.

6 PERFORMANCE EVALUATION
Messages are broadcast over the CAN, and an ECU is a resource-

constrained component for processing/transmitting information

for in-vehicle communications. Therefore, it is necessary to take

computation time, communication overhead, and energy consump-

tion into account for cost-effective automotive data exchanges. For

efficient results, it is indispensable to reduce the number of dif-

ferent cryptographic operations and parameters while satisfying

security. Hence, we compare our proposed scheme with that of

recent schemes that have used CAN in IVNs.

6.1 Testbed Configuration
ECU hardware in autonomous vehicle is configured with 64-bit

ARM core processors to perform computations [22], and Raspberry

Pi 3B+ is also designed based on the ARM processor. Thus, we

consider a testbed environment with two Raspberry Pi 3B+ devices

to measure the computational efficiency of AutoSec. The config-

uration of Raspberry Pi 3B+ is as 1.4 GHz quad-core 64-bit ARM

Cortex-A53 processor with BCM2837B0 chip, 1 GB SRAM, 2.5 Amp

power, and 5 V voltage supply [23].

6.2 Results Analysis
We present performance results for AutoSec and relevant commu-

nication schemes based on different performance parameters, such

as computation time, communication overhead, and energy con-

sumption to analyze their efficiency for efficient in-vehicle commu-

nications. A detailed explanation for results analysis is as follows.

Computation Time. It is calculated based on the required num-

ber and types of cryptographic operations required during the data

transmission phase for execution. The computation time is gen-

erally measured in milliseconds (ms). To calculate the execution

time for the different operations, we execute the corresponding

cryptographic operations (i.e., AES 128-bit encryption/ decryption

(AES), EC Small-scale Multiplication (ECSM) with a 256-bit large

prime number, SHA-512 [ℎ(·)), and 𝐾𝐷𝐹𝐺𝐾] using Python libraries

(i.e., pycrypto and py-ecc) in Python 3.7 on Raspberry Pi 3B+ plat-

form. Here, 𝐾𝐷𝐹𝐺𝐾 is a key derivation function based on SHA-512

that generates two key values of 512 bits, achieving more security

during the key generation process. Since SHA-512 is practiced for

both computations (ℎ(·) and 𝐾𝐷𝐹𝐺𝐾), the execution time remains

the same for both the functions. After 100 runs, the average exe-

cution time is 1.1410 ms for 𝑇𝐴𝐸𝑆 , 3.0520 ms for 𝑇𝐸𝐶𝑆𝑀 , 0.0014 ms
for 𝑇ℎ (·) /𝐾𝐷𝐹𝐺𝐾 . Since the execution time of ⊕ and | | is highly
negligible, it is not taken into consideration for all the schemes.

The scheme in [8] requires to execute 6𝑇ℎ (·) + 2𝑇𝐾𝐷𝐹 in ISCVP,

2𝑇𝐴𝐸𝑆 + 2𝑇ℎ (·) in RFTRP, and 2𝑇𝐴𝐸𝑆 + 3𝑇ℎ (·) + 2𝑇𝐾𝐷𝐹 in SKUP.

The protocol design in [18] needs to perform 4𝑇ℎ (·) in ISCVP,

4𝑇ℎ (·) + 2𝑇𝐴𝐸𝑆 in RFTRP, and 8𝑇ℎ (·) + 4𝑇𝐸𝐶𝑆𝑀 in SKUP. However,

the AutoSec requires only 9𝑇ℎ (·) + 2𝑇𝐾𝐷𝐹 , 9𝑇ℎ (·) + 2𝑇𝐾𝐷𝐹 , and
6𝑇ℎ (·) + 2𝑇𝐾𝐷𝐹 for ISCVP, RFTRP, and SKUP phases respectively.

Considering the average execution time of each operation, we cal-

culate the computation time for Woo et al. [8], Palaniswamy et

al. [18], and AutoSec based on the required operations in each of

the scheme. Figure 5 shows the required computation time for rele-

vant schemes. Since AutoSec is designed with low-cost and fewer

operations, the computation time in AutoSec is comparatively less

than [8] and [18].

EnergyConsumption.When different operations are performed

for data transmission, it consumes energy to execute different op-

erations during message/key generation and verification. Thus, it

7

0.0112 0.0056 0.0154
2.2848

2.2876

0.0154

2.2890

12.2192

0.0112

[8] [18] Proposed

0

5

10

CAN Communication Protocols

C
o
m
p
u
t
a
t
i
o
n
T
i
m
e
(
i
n
m
s)

ISCVP

RFTRP

SKUP

Figure 5: Computation Time Comparison for Relevant CAN
Communication Schemes

0.140 0.0070 0.193
28.560

28.595

0.193

28.613

152.740

0.140

[8] [18] Proposed

0

50

100

150

CAN Communication Protocols

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
(
i
n
m
J

ISCVP

RFTRP

SKUP

Figure 6: Comparison of the Required Energy in Relevant
CAN Communication Protocols

is necessary to evaluate the energy requirement. It is computed as

𝐸𝐶𝐶𝑂 = 𝑇𝐶𝑇 · 𝑃𝐶𝑃𝑈 , where 𝐸𝐶𝐶𝑂 = energy consumption, 𝑇𝐶𝑇 =

computation time, 𝑃𝐶𝑃𝑈 = 𝑉 · 𝐼 = CPU maximum power, 𝑉 =

voltage power, and 𝐼 = current [24]. The energy consumption is

measured in millijoule (mJ). Raspberry Pi 3B+ is used as the im-

plementation platform, the CPU maximum power is 12.5 W [23].

Normally, the communications phases of the messages (i.e., ISCVP,

RFTRP, and SKUP in Section 4.2) are routinely performed for differ-

ent operations, whereas the basic setup phase is initially executed

once. Thus, the energy consumption for message communication

has more impact for energy-efficient data exchange schemes, cal-

culating the consumed energy for these communication protocol

designs. We have compared the required energy for each of the

schemes [8], [18], and AutoSec in Figure 6. AutoSec consumes less

energy, as the computation time is relatively less than [8] and [18].

Communication Overhead. Both (sender and receiver) need

to exchange different overhead parameters to perform initial ses-

sion key computation and verification, remote frame transmission

request, and session key update (see Section 4.2). The cost involved

in transferring these parameters is known as the communication

overhead (measured in bytes), and it is calculated based on the type

236

152

280

96

160

284

160

256

220

[8] [18] Proposed

100

150

200

250

300

CAN Communication Protocols

N
u
m
b
e
r
o
f
b
y
t
e
s

ISCVP

RFTRP

SKUP

Figure 7: Communication Overhead in Relevant CAN Com-
munication Mechanisms

and required number of parameters during each protocol. One-way

hash (i.e., SHA-512 ℎ(·)), AES encryption (𝐴𝐸𝑆), EC multiplication

(𝐸𝐶𝑀𝑃), random nonce/identity (𝑅𝑁 /𝐼𝐷) and time-stamp (𝑇𝑆) re-

quire 64 bytes, 32 bytes, 64 bytes, 12 bytes, and 8 bytes respectively.

In AutoSec, the communication overhead is 280 bytes [4ℎ(·)
+3𝑇𝑆], 284 bytes [4ℎ(·)+1𝐼𝐷+2𝑇𝑆], and 220 bytes [3ℎ(·)+1𝐼𝐷 +2𝑇𝑆]

in ISCVP, RFTRP, and SKUP respectively. In [8], the communi-

cation overhead is 236 bytes [3ℎ(·)+1𝑅𝑁+1𝐴𝐸𝑆] for ISCVP, 96

bytes [1ℎ(·)+1𝐴𝐸𝑆] for RFTRP, and 160 bytes [2ℎ(·)+1𝐴𝐸𝑆] for
SKUP, whereas the scheme in [18] requires 152 bytes (2ℎ(·)+2𝑅𝑁),

160 bytes [2ℎ(·)+1𝐴𝐸𝑆], and 256 bytes [2ℎ(·)+2𝐸𝐶𝑀𝑃] for ISCVP,
RFTRP, and SKUP respectively. Figure 7 shows a comparative study

of the communication overhead for the related works.

The seed value and random nonce are broadcast over the CAN

bus during ISCVP of [8], and these values are used as inputs for

the key computation and verification, enabling a compromised

ECU (based on broadcast values) to perform malicious activities

later. Though communication overhead is minimized in [8], mutual

authentication is not provided during exchange of messages in

RFTRP, and its protocol design can only satisfy 128-bit security.

Time-stamps are not used, and the adversary can derive seed value

from the transferred parameters in SKUP that makes it easy to

launch authentication attacks in [8]. In [18], important values are

sent in plain text, and they do not use time-stamp that reduces the

communication cost, but increases security vulnerabilities during

data exchanges, and the scheme [18] can achieve 128-bit security

level.

AutoSec is mainly constructed based on SHA-512 to satisfy 256-

bit security, and different types of values (i.e., SHA-512 and time-

stamp) are exchanged during the exchanges of overhead parameters

that resists data modification, information disclosure, and message

freshness over the CAN bus. Thus, the communication overhead

in AutoSec is comparatively more than [8] and [18]. However, Au-

toSec performs better in other crucial performance measures (by

taking very less computation time and energy consumption) than

[8] and [18] (refer Figure 5 and Figure 6). Security and computation

efficiency together are important factors for in-vehicle networks,

8

and AutoSec outperforms collectively, having the trade-off between

security and efficiency.

7 CONCLUSION
Wepresented AutoSec, a securemessage communication scheme for

CAN in-vehicle networks. AutoSec provides secure CAN message

transmission using the SHA-512, bit-wise XOR and concatenation

operations. These operations cater to efficient computation and

verification for resource-constrained ECUs in vehicles. The efficacy

of AutoSec is also analyzed to prove that it ensures user authen-

tication, message integrity, message confidentiality, and defense

against session key attacks. The proposed scheme involves low-

cost cryptographic operations for executing in-vehicle message

communication, thereby eliminating the requirements of hardware

modifications or network improvement. Performance evaluation

of AutoSec through comparative analysis with competent schemes

reveals that it outperforms them in terms of energy efficiency and

low communication time.

REFERENCES
[1] Humayed, A., Li, F., Lin, J., Luo, B.: CANSentry: Securing CAN-based cyber-

hhysical systems against denial and spoofing attacks. In: European Symposium

on Research in Computer Security (ESORICS), LNCS, vol. 12308, pp. 153–173

(2020).

[2] Kim, K., Kim, J. S., Jeong, S., Park, J. H., Kim, H. K.: Cybersecurity for autonomous

vehicles: Review of attacks and defense. In: Computers & Security, 102150, pp.

1–27 (2021).

[3] Kneib, M., Schell, O., Huth, C.: EASI: Edge-based sender identification on resource-

constrained platforms for automotive networks. In: Network and Distributed

System Security Symposium (NDSS), pp. 1–16 (2020).

[4] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,

Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental

analyses of automotive attack surfaces. In: USENIX Security Symposium, vol. 4,

no. 447-462, pp. 1-16, (2011).

[5] Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. In:

Black Hat USA, pp. 91 (2015).

[6] Cai, Z., Wang, A., Zhang, W., Gruffke, M., Schweppe, H.: 0-days & mitigations:

Roadways to exploit and secure connected BMW cars. In: Black Hat USA, pp. 39

(2019).

[7] Aliwa, E., Rana, O., Perera, C., Burnap, P.: Cyberattacks and countermeasures for

in-vehicle networks. In: ACM Computing Surveys (CSUR), 54(1), pp. 1–37 (2021).

[8] Woo, S., Jo, H. J., Lee, D. H.: A practical wireless attack on the connected car and

security protocol for in-vehicle CAN. In: IEEE Trans. on Intelligent Transportation

Systems, 16(2), pp. 993–1006 (2014).

[9] Nowdehi, N., Lautenbach, A., Olovsson, T.: In-vehicle CAN message authen-

tication: An evaluation based on industrial criteria. In: IEEE 86th Vehicular

Technology Conference (VTC-Fall), pp. 1–7 (2017).

[10] Choi, W., Jo, H. J., Woo, S., Chun, J. Y., Park, J., Lee, D. H.: Identifying ecus using

inimitable characteristics of signals in controller area networks. In: IEEE Trans.

on Vehicular Technology, 67(6), pp. 4757–4770 (2018).

[11] Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: A story of

telematic failures. In: 9th USENIX Workshop on Offensive Technologies (WOOT),
pp. 15 (2015).

[12] Miller, C., Valasek, C.: Adventures in automotive networks and control units. In:

Def Con, 21, 260-264 (2013).

[13] Woo, S., Jo, H. J., Kim, I. S., Lee, D. H.: A practical security architecture for in-

vehicle CAN-FD. In: IEEE Trans. on Intelligent Transportation Systems, 17(8), pp.

2248–2261 (2016).

[14] Ying, X., Bernieri, G., Conti, M., Poovendran, R.: TACAN: Transmitter authenti-

cation through covert channels in controller area networks. In: 10th ACM/IEEE

International Conference on Cyber-Physical Systems, pp. 23-34 (2019).

[15] Ying, X., Sagong, S. U., Clark, A. Bushnell, L., Poovendran, R.: Shape of the cloak:

Formal analysis of clock skew-based intrusion detection system in controller

area networks. In: IEEE Trans. on Information Forensics and Security, 14(9), pp.

2300–2314 (2019).

[16] Mun, H., Han, K., Lee, D. H.: Ensuring safety and security in CAN-based auto-

motive embedded systems: A combination of design optimization and secure

communication. In: IEEE Trans. on Vehicular Technology, 69(7), pp. 7078–7091

(2020).

[17] Groza, B., Popa, L., Murvay, P. S.: Highly efficient authentication for CAN by iden-

tifier reallocation with ordered CMACs. In: IEEE Trans. on Vehicular Technology,

69(6), pp. 6129–6140 (2020).

[18] Palaniswamy, B., Camtepe, S., Foo, E., Pieprzyk, J.: An efficient authentication

scheme for intra-vehicular controller area network. In: IEEE Trans. on Informa-

tion Forensics and Security, 25(15), pp. 3107–3122 (2020).

[19] Yu, D., Hsu, R. H., Lee, J.: EC-SVC: Secure can bus in-vehicle communications

with fine-grained access control based on edge computing. In: arXiv preprint

arXiv:2010.14747, pp. 1–13 (2020).

[20] Fisher, D. A., McCune, J. M., Andrews, A. D.: Trust and trusted computing plat-

forms. In: Technical Note CMU/SEI-2011-TN-005, Carnegie Mellon University,

pp. 1–26 (2011).

[21] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing

efficient protocols. In: ACM Conference on Computer and Communications

Security (ACM CCS), pp. 62–73 (1993).

[22] Autopilot, Processors, and Hardware. [Online]:

https://teslatap.com/articles/autopilot-processors-and-hardware-mcu-hw-

demystified/, Accessed on May 20 (2021).

[23] Raspberry Pi 3 Model B+. [Online]: https://www.raspberrypi.org/products/raspbe

rry-pi-3-model-b-plus, Accessed on June 15 (2021).

[24] He, D., Chen, C., Chan, S., Bu, J.: Secure and efficient handover authentication

based on bilinear pairing functions. In: IEEE Trans. on Wireless Communications,

11(1), pp. 48–53 (2011).

9

	Abstract
	1 Introduction
	2 Related Works
	3 System Overview
	3.1 System Architecture
	3.2 Adversary Model
	3.3 Security Requirements

	4 The Proposed Scheme: AutoSec
	4.1 AutoSec: Basic Setup
	4.2 AutoSec: Message Communication Protocol

	5 Security Analysis
	6 Performance Evaluation
	6.1 Testbed Configuration
	6.2 Results Analysis

	7 Conclusion
	References

