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Abstract—The Internet of Things (IoT) is an emerging paradigm and has penetrated deeply into our daily life. Due to the seamless
connections of the IoT devices with the physical world through the Internet, the IoT applications use the cloud to store and provide
ubiquitous access to collected data. Sharing of data with third party services and other users incurs potential risks and leads to unique
security and privacy concerns, e.g., data breaches. Existing cryptographic solutions are inapt for resource-constrained IoT devices,
because of their significant computational overhead. To address these concerns, we propose a data protection scheme to store the
encrypted IoT data in a cloud, while still allowing query processing over the encrypted data. Our proposed scheme features a novel
encrypted data sharing scheme based on Boneh-Goh-Nissim (BGN) cryptosystem, with revocation capabilities and in-situ key updates.
We perform exhaustive experiments on real datasets, to assess the feasibility of the proposed scheme on the resource constrained IoT
devices. The results show the feasibility of our scheme, together with the ability to provide a high level of security. The results also
show that our scheme significantly reduces the computation, storage and energy overheads than the best performed scheme in the
state-of-the-art.

Index Terms—BGN cryptosystem, Cloud computing, Data security, Internet of Things, Somewhat homomorphic encryption, Secure
sharing.
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1 INTRODUCTION

A rapidly growing number of wireless sensor nodes and
hybrid networks are leading to the emergence of the

Internet of Things (IoT) and its various applications, in-
cluding health and activity monitoring, home-automation,
elderly care [1]. Many of these IoT applications have sig-
nificantly transformed the way users perceive information
about themselves and the adjacent environment. The current
ecosystem of the IoT consists of typically designated low-
power devices equipped with sensors that collect data. The
collected data usually consist of sensor readings (e.g., skin
temperature, breathing rate), health-related symptoms (e.g.,
heart rate variability, physiological stress), activity metadata
(e.g., social lives, preference). For example, the wearable
devices such as wrist bands and smart watches that can
record users’ stress levels from skin conductance [2], GPS
trackers that can store physical activities [3] and fertility
apps that can predict the most suitable time to conceive [4].
We envision that these new types of IoT based sensing
applications will gain massive popularity with further ad-
vancement in the IoT.

Generally, the IoT based sensing applications produce a
significant amount of data that need to be processed and
stored. Due to the limited processing and data storage capa-
bilities of the IoT devices, the processing and data storage
functionalities are largely shifted to the cloud [5]. Addition-
ally, processing and storing the data in the cloud improves
scalability, ubiquitous access and sharing possibilities [6].
For example, an IoT device can send online queries on the
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data stored in the cloud to retrieve the raw sensor values
or compute any statistics (e.g., average, standard deviation).
In this way, the cloud based IoT eliminates the processing
and storage limitations of resource-constrained IoT devices
and eases the application deployment. However, secure data
sharing in the cloud based IoT systems poses typical privacy
risks, including unauthorised access of personalised data
stored in the clouds, arbitrary threats due to the cloud being
compromised (e.g., a curious cloud employee) [6]. Further-
more, due to the unique characteristics of the IoT system,
the designing of secure cloud based IoT systems faces the
following major challenges: (i) the system must support
decryption on request, i.e., several types of functionalities
can be supported using several types of decryption, (ii)
some frequent queries on data statistics, e.g., finding the
standard deviation, average can be calculated over the ci-
pher texts directly, (iii) data owners must have complete
control over their data and decide with whom, what and at
which granularity they can share their data.

A promising approach to secure data in the cloud based
IoT systems is to store data in encrypted form and have all
the data encryption and decryption operations performed
in the IoT device. However, this is quite impractical as
the IoT devices are resource-constrained, and therefore pro-
hibit any cloud server side query processing. Furthermore,
storing encrypted data with conventional symmetric key
encryption techniques, like AES, would serve the purpose,
but render data unsearchable and unsharable. To overcome
these limitations, in recent years, many encrypted query
processing approaches [6], [7], [8], [9] have been proposed
for the cloud based IoT systems. However, none of these ap-
proaches support calculation of multi-variate polynomials
of degree 2 on the ciphertext, e.g., regression and variance
analysis, which are essential for many IoT applications, e.g.,
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healthcare, smart meter. In this work, to overcome these
limitations, we mainly focus on Somewhat Homomorphic
Encryption (SHE) [10] technique and in particular, Boneh-
Goh-Nissim (BGN) cryptosystem [11]. By leveraging the
additive and multiplicative homomorphism properties of
BGN cryptosystem, an IoT device can perform algebraic
operations to evaluate the multi-variate polynomials of de-
gree 2 on encrypted data by keeping the ciphertext size
constant [10]. There are many IoT applications, where re-
gression and variance analysis are essential and important
for the future course of actions. or instance, in the health
monitoring application, a medical practitioner can prescribe
appropriate medicine to the patient using the variance anal-
ysis of heartbeat or blood pressure. Further, a medical prac-
titioner can estimate the criticality of a patient with the help
of regression analysis on different health parameters, e.g.,
heartbeat, blood pressure [6]. Another important property
of BGN cryptosystem is that the execution time depends on
the size of the plaintext [11]. Due to the shorter message size
of the IoT device (typically, vary between 32 and 160-bit [1]),
we can speed up the overall execution process using BGN
cryptosystem in the IoT devices.

Recently, Xue et al. [7] and Shafagh et al. [6] designed
Kryptein and Pilatus, respectively, to secure the interactions
between the IoT devices and the cloud. Kryptein is a com-
pressive sensing [12] based encryption scheme for secure
query processing in the IoT systems. The major limitation
of Kryptein is that it does not support any sharing features.
On the contrary, Pilatus is the first to combine encrypted
query processing with sharing, for the cloud based IoT
systems. More importantly, Pilatus supports both individual
and group sharing features with in-situ key-update capa-
bility. However, Pilatus does not guarantee freshness or
correctness of the shared encrypted data. Furthermore, since
the design of Pilatus is based on Paillier cryptosystem [13],
which is an additive homomorphic scheme, it only supports
the addition related queries, e.g., range, sum. Moreover,
due to their significant computational overhead, most of the
Partially Homomorphic Encryption (PHE) based schemes,
e.g., Telos [8], CryptDB [9] are not suitable for the energy
constrained IoT devices. In short, most of the current state-
of-the-art solutions either support secure query processing
or sharing, but not both at the same time. Also, when both
secure query processing and sharing are supported, the
solutions do not guarantee freshness of the shared data.
Moreover, most of the PHE schemes are not suitable for
the energy constrained IoT devices, due to their significant
computational overhead. In this paper, we address the chal-
lenges of encrypted query processing and secure sharing of
IoT data, as shown in Fig. 1.

Contribution: In this paper, we present CrypSH, a new
IoT data protection scheme, which stores the encrypted IoT
data on the cloud, while allowing for secure query process-
ing and sharing operation over the encrypted IoT data. One
of the major features of CrypSH is that it supports efficient
statistical computation on ciphertexts. In particular, to avoid
expensive data decryption on the IoT devices for frequently
used queries, e.g., determining the standard deviation (SD),
average (AVG) and summation (SUM), the CrypSH effi-
ciently computes the statistics directly on ciphertexts in
the cloud. Our CrypSH enables secure sharing of the IoT
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Fig. 1. Sharing and processing of encrypted data in Cloud based IoT
systems.

data based on our design of the re-encryption scheme.
In particular, our designed re-encryption scheme allows
the cloud server to convert ciphertext generated from the
sender’s key to ciphertext generated from the receiver’s key,
without revealing the plaintext. For example, if a sender,
say Alice, intends to share data with a receiver, say Bob,
Alice calculates a token that enables the cloud server to re-
encrypt Alice’s data (without decrypting) for Bob. Similar
procedure is followed by Alice to share her data with a
group. It is worth mentioning that Alice generates the re-
encryption token based on her own private key and Bob’s
public key. We also introduce a key revocation scheme that
allows the IoT devices to terminate data sharing operation
whenever required. Further, to protect the owner’s old data,
we proposed an in-situ key update technique at the cloud
end. The major contributions of this paper are as follows.

• We design and evaluate the CrypSH, a BGN cryp-
tosystem based encryption scheme for the query pro-
cessing and data sharing in the cloud based IoT sys-
tems. To the best of our knowledge, it is the first BGN
cryptosystem based encryption scheme that achieves
energy-efficient secure query processing and data
sharing for the cloud based IoT systems.

• We also devise a sharing revocation mechanism to
terminate a sharing operation at any time and in-situ
key update technique. One of the main features of the
CrypSH is that it ensures data freshness in addition
to authentication, confidentiality and integrity of the
IoT devices in the cloud based IoT systems.

• We experimentally demonstrate the feasibility of
the CrypSH. We measure the performance of the
CrypSH in terms of the computational overhead,
storage overhead, energy overhead, throughput, data
freshness and end-to-end delay. Experimental re-
sults show that the CrypSH significantly improves
the underlying overheads without compromising the
network performance metrics like throughput, end-
to-end delay compared to the state-of-the-art realiza-
tion, Pilatus [6].

This work is an extended version of our previously
published work [14]. In particular, the current work extends
our prior work in the following aspects: (i) We summarise
and present more existing works most relevant to our
context in a more structured manner. (ii) We enhance the
system model by including the background of BGN cryp-
tosystem, and design and security goals. (iii) We propose a
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sharing technique to enable the group sharing operations.
(iv) We provide security analysis of the CrypSH. (v) We
conduct more comprehensive and rigorous experiments on
real datasets to validate the correctness of the CrypSH.

Organisation The rest of this paper is organised as fol-
lows. Section 2 discusses the related work. We describe the
system model considered for the present work in Section 3.
We introduce the privacy preserving query processing and
sharing mechanisms based on the BGN cryptosystem in
Section 4. In Section 5, we provide a security analysis, based
on the design and security goals introduced in Section 2.
In Section 6, we evaluate the performance of CrypSH and
compares them to the state-of-the-art. Finally, we conclude
the work in Section 7.

2 RELATED WORK

Recently, many schemes were reported with an objective of
secure communication in the cloud based IoT systems. To
achieve this goal, the researchers have focused on secure
end-to-end channels [21], [22], privacy-preserving crypto-
graphic schemes [15], [23], [24], and encrypted query pro-
cessing techniques [6], [9], [20]. Since we are focusing on
the encrypted query processing techniques, we present here
some of the works more relevant to our context.

Song et al. [5] formalised the searchable encryption
technique for the purpose of permitting text search over
encrypted data. Based on the usage of either symmetric
or asymmetric encryption technique, they classified the
searchable encryption technique into two types, namely,
symmetric searchable encryption and public key based
searchable encryption. The major advantage of public key
based searchable encryption is that it provides stronger
security and more expressive query than symmetric search-
able encryption. In our work, we consider the public key
based searchable encryption. Later, Boneh et al. [24] initially
defined the notion of public key based searchable encryp-
tion and developed a three-party secure query processing
protocol that supports the homomorphic computations on
encrypted data. Popa et al. [9] developed the CryptDB, one
of the first practical schemes, that integrates the efficient
online encrypted query processing on the cloud without
requiring the modification of the cloud database.

In [15], Henecka et al. presented TASTY, a novel tool for
two-party secure function evaluation. Basically, the TASTY
is a new compiler that can generate protocols based on
the homomorphic encryption and efficient garbled circuits,
as well as a combination of both. Most importantly, it is
observed that the TASTY significantly improves the online
latency for securely evaluating the AES functionality. Re-
cently, different from [15], Liang et al. [16] presented a novel
Identity based Data Sharing and Searching (IDSS) technique
for the cloud. In addition to data sharing and searching,
IDSS supports both the re-encryption and secret key update
features. However, both the re-encryption and secret key
update are performed at the end of the proxy server. To min-
imise the query latency, Wang et al. [17] designed a Secure
Graph DataBase (SecGDB) encryption scheme. The SecGDB
uses the efficient additive homomorphic encryption and dis-
torted circuits for supporting the shortest distance queries
having optimal time and storage complexities. Further, the

authors proposed an auxiliary data structure, called queue
history for obtaining better time complexity over multiple
queries. In [18], the authors proposed a secure and highly
available cloud database scheme, SHAMC, for the multi-
cloud environment. The SHAMC uses the idea of secure
multi-party computation and homomorphic encryption for
storing data and executing queries directly on the ciphertext.

Different from the aforementioned schemes, Kotamsetty
and Govindarasu [19] proposed an Adaptive Latency-aware
Query Processing (ALQP) scheme for the cloud based
IoT system. The main objectives of the work are to min-
imise query latency and energy consumption overhead.
To achieve the goals, they divided the result of a large
query into several suitable smaller sized results and pro-
cessed them concurrently. Shafagh et al. [8] designed the
Telos, an extended version of the CryptDB, specially for
the IoT devices to improve the query efficiency and reduce
energy overhead. The Telos relies on several algorithms
that accelerate order-preserving and partially homomorphic
encryption. However, though the computation overhead is
reduced through the optimisation algorithms, the expensive
energy and computation overheads prohibit the application
of all of these schemes for the constrained IoT devices.
Unlike any cryptographic technology, Shafagh et al. [25]
present a blockchain based distributed access control and
data management scheme for the cloud based IoT system.
They combine the blockchain with an off-chain storage for
a scalable secure data storage purpose. Recently, Kim et
al. [20] proposed a secure and fault-tolerant key agreement
mechanism for group data sharing in the cloud based IoT
systems. The authors used symmetric balanced incomplete
block design and group signature techniques to protect
the security of the outsourced data and secure group data
sharing in the cloud. Different from [17] and [20], to address
the concerns generated due to data sharing with third-party
services and other users, Shafagh et al. [6] presented a
data protection platform named as Pilatus. Pilatus enables
the cloud to store only encrypted data, though it is able
to process specific queries. This work mainly focuses on
the Paillier cryptosystem [13]. Similar to [6], Xue et al. [7]
proposed a compressive sensing based encryption scheme,
Kryptein, for secure query processing in the cloud based
IoT systems. The Kryptein uses several techniques, like
random compressed encryption, statistical decryption to
ensure secure data insertion, accurate raw data decryption
and efficient statistical computation in the cloud based IoT
system. However, it does not support secure data sharing
operation.

In Table 1, we summarise the key features of the exist-
ing state-of-the-art works and the CrypSH. In the specific
context of secure query processing and sharing, except the
Pilatus [6], none of the current solutions support secure
sharing. Even if both secure query processing and sharing
features are supported, the solutions do not guarantee fresh-
ness of the shared data. Moreover, due to their significant
computational overhead, most of the schemes are not energy
efficient. In this paper, we consider the Pilatus as our main
competitor and show that our proposed scheme not only
achieves system security but also improves on performance
significantly than the Pilatus.
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TABLE 1
Comparison of typical query processing and sharing techniques

Scheme Query processing Sharing Authentication Confidentiality Integrity Data Freshness Environment
TASTY [15] Yes Yes Yes Yes Yes No Cloud
IDSS [16] Yes Yes Yes Yes Yes No Cloud
SecGDB [17] Yes No Yes Yes Yes No Cloud
SHAMC [18] Yes No Yes Yes Yes No Cloud
CryptDB [9] Yes No Yes Yes Yes No Cloud
ALQP [19] Yes No Yes Yes Yes No Cloud-IoT
ESIoT [20] Yes No Yes Yes Yes No Cloud-IoT
Talos [8] Yes No Yes Yes Yes No Cloud-IoT
Kryptein [7] Yes No Yes Yes Yes No Cloud-IoT
Pilatus [6] Yes Yes Yes Yes Yes No Cloud-IoT
CrypSH Yes Yes Yes Yes Yes Yes Cloud-IoT

3 SYSTEM OVERVIEW

In this section, we briefly discuss the different models used
in the CrypSH. Particularly, Section 3.1 presents the back-
ground of the BGN cryptosystem. Section 3.2 discusses the
CrypSH architecture. We then introduce the threat model
in Section 3.3. Section 3.4 presents the design and security
goals. Finally, in Section 3.5, we present the assumptions.

3.1 BGN Cryptosystem
The homomorphic encryption is a type of encryption
scheme, which enables a third party (e.g., cloud) to execute
operations on plaintexts, to be performed on their respective
ciphertexts without disclosing the plaintexts [10]. The BGN
cryptosystem is a novel homomorphic public key encryp-
tion scheme based on finite groups of composite order that
support a bilinear map [11]. It assimilates the Paillier [13]
encryption scheme with the Okamoto-Uchiyama [26] en-
cryption scheme. The use of Paillier and bilinear map in
BGN cryptosystem allows to perform any number of addi-
tions and one multiplication on the ciphertexts. Generally,
the BGN cryptosystem consists of three algorithms, namely,
key generation, encryption and decryption. The details of
these three algorithms are described below.

Key Generation: Initially, each user executes the key gen-
eration algorithm to generate it’s own private and public
keys. The steps are as follows:

• The user picks two distinct prime numbers, x′ and y′

such that x′ = 2x + 1 and y′ = 2y + 1, where x and
y are two distinct numbers.

• The user selects e as a bilinear map [27] such that
e : Zn × Zn → Z∗n, where Zn and Z∗n are groups
of order n = x′y′. The user computes λ = xy,
chooses a random generator g ∈ Zn with order λ.
Subsequently, it computes η = gy mod n and η is
the random generator of Zn.

• The user publishes the public key pku = (n, g, η) and
store the private key prku = x.

Encryption: The user executes the encryption algorithm
to generate the ciphertext c of the plaintext (or, message) m.
The steps are as follows:

• The user first randomly chooses a number r ∈ Zn.
• The user then calculates c = E(m) = gmηr mod n.
• Finally, the user outputs c as the ciphertext.

Decryption: To decrypt the ciphertext c to extract the
plaintext m, the user performs the following steps:

• The user first computes cx = (gmηr)x = (gx)m (Note
that ηx ≡ 1 mod n).

• The user solves the discrete logarithm of (gx)m

mod n with the base gx using the Pollard’s lambda
algorithm [28] and produces the plaintext m = D(c).

It is worth mentioning that the decryption algorithm of
the BGN cryptosystem takes polynomial time and depends
on the size of the message space M , where 0 ≤ m ≤ M .
Thus, the BGN cryptosystem as described earlier is more
suitable for encrypting small sized messages of the IoT
devices. Generally, the size of a message in an IoT device
ranges between 32 to 160-bit [1], [6].

3.2 Architecture

The CrypSH uses the BGN cryptosystem to allow query
processing over encrypted data in the cloud. The CrypSH
works by encrypting all data entries stored in the IoT
devices; next, only the encrypted data (i.e., cipher) is sent
to the cloud (i.e., server) and the originally stored data
is deleted from the IoT device. With the help of the pre-
computed key, an IoT device encrypts the streaming data
and uploads the same to the cloud efficiently. So, when data
statistics such as SUM, AVG and SD are requested by an
IoT device, the cloud will compute the statistics over the
ciphertext (i.e., without requiring to decrypt the raw data)
and send back the ciphertext to the IoT device. Only the
IoT device, which owns the correct keys can decrypt the
ciphertext and obtain SUM, AVG and SD results with little
additional computational cost. Finally, the CrypSH offers
secure sharing of encrypted data with an IoT device and/or
a group of IoT devices, based on re-encryption techniques.
In fact, during secure sharing of encrypted data with an IoT
device and/or a group of IoT devices, the CrypSH features
include access withdrawal with in-situ re-keying.

Our CrypSH comprises three main modules, namely,
the client engine, the cloud engine and an ICA. Figure 2
illustrates the architecture and workflow of the CrypSH. The
main functionalities of each of the three modules are given
below.

Client Engine: The client engine runs in each IoT device
or gateway. Basically, it generates raw data (e.g., time, lo-
cation, audio/image/video files) on computational devices
and stores encrypted data in the cloud. Also, it selectively
shares the encrypted versions of data, i.e., ciphertexts with a
third party user (i.e., IoT device). During sharing of cipher-
text(s), the client engine interacts with an ICA to verify the
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Fig. 2. The CrypSH architecture.

identity of the other client engine and with the cloud engine
for secure storage, sharing and retrieving data. Particularly,
in the CrypSH, the client engine encrypts, decrypts, stores
the keys, and handles sharing-related activities like gener-
ating re-encryption tokens, triggering revocation and in-situ
re-keying. Since the client engine places encrypted data on
the cloud, hence, raw data is never revealed to the cloud
administrator. This protects the confidentiality of the data
if the cloud service provider is malicious or compromised.
Using private key and time stamp (see Section 4.1), the client
engine also protects the integrity and freshness of the data
that the cloud delivers to an IoT device. For the sake of
convenience, in this paper, the term ‘user’, ‘client’, ‘client
engine’ and ‘IoT device’ are used interchangeably.

Cloud Engine: In CrypSH, the cloud engine is
application-agnostic and supports primary database inter-
face and features. It provides storage for the continuously
generated IoT data and has the ability to handle online
queries. The cloud engine stores and accesses data only
in encrypted form. It supports the mechanisms needed
for processing encrypted data, i.e., insertion, homomorphic
addition and multiplication, re-encryption and in-situ re-
keying. For example, to store encrypted data in the cloud,
insertion queries are used in the cloud database. During de-
signing of the CrypSH, we considered a structural database
such as MySQL and used user defined functions to replace
the default routines with crypto enabled ones.

ICA: The ICA is an independent trusted authority re-
sponsible for authenticating the identity of each IoT device
during the initialisation phase (see Section 4). It is also
responsible for storing the public key of each IoT device. In
CrypSH, the ICA is used by the client engine to search for
the public key of other IoT devices. In multi-user systems,
the ICA is a standard requirement and considered as a
trustworthy external entity [6]. Our scheme is independent
of the ICA and borrows this function from systems such as
the Keybase [29]. Basically, the Keybase is an independent
party, where users reveal their identity by posting their own
public key or token.

3.3 Threat Model

The Pilatus and Kryptein, both addressed two important
threat models, namely, curious Data Base Administrator
(DBA) and a more severe one cloud server compromise. In
our threat model, we not only inherit these two models, but
also address a more stronger network based threat model.
The threat model that we consider in this work is as follows.

Threat 1 (Curious DBA): In the CrypSH, we assume
that the DBA is honest but curious and performs passive
attack [6], [7]. Specifically, the DBA correctly executes the
database protocols and neither alters stored data nor query
results that would be noted by the client/tenant and would
malign the reputation of the cloud service provider. This
threat includes Database Management System (DBMS) soft-
ware compromises, root access to DBMS machines, and
even access to the random access machine of physical
machines [30]. With the increase in database consolidation
within the cloud data centres, outsourcing of databases to
public cloud computing infrastructures, and the use of third-
party DBAs, this threat is increasingly important [9]. One of
the goals of the CrypSH is to attain confidentiality of the
stored data. We believe that this is a valid model, because if
any protocol violation is detected, the client could penalise
the service provider.

Approach: The CrypSH allows processing of SQL
queries over encrypted data. It uses one of the popular SHE
techniques, i.e., BGN to protect data from the curious DBA
or other attackers who have complete access to the data
stored in the cloud. As the data stored in the cloud are
in encrypted form, hence, the CrypSH thwarts the private
information from being accessed by the curious DBA. We
discuss the design procedure in Section 4.

Threat 2 (Network based Attacks): In this threat, the
attacker targets the communication between the IoT device
and the cloud. The attackers can perform passive or active
attacks to reconstruct the client data. For example, a pas-
sive attacker can launch eavesdropping, replay and traffic
analysis attacks. Conversely, an active attacker can launch
man-in-the-middle or impersonating attacks.

Approach: The CrypSH provides secure protection from
the passive attackers by ensuring that without the user
private key the raw data cannot be accurately retrieved.
This allows providing confidentiality, integrity protection,
data freshness and authenticity of the data. In contrast,
the CrypSH addresses the active attacks using a public
key, i.e., BGN cryptography based authentication scheme.
In CrypSH, an IoT device first registers itself in an ICA
and only authenticated IoT devices are allowed to share
encrypted data with another IoT device. Only an IoT device
possessing the correct private key can retrieve the raw data.
We provide more detailed discussion on protection from
passive and active attackers in Section 4.

Threat 3 (Server Compromised): Under this threat, the
cloud server is compromised and all the encrypted data
stored in the cloud are revealed to an attacker. An attacker
accesses the cloud server and can launch different attacks.

Approach: The CrypSH provides the following guaran-
tees: (i) under any circumstances, the cloud server has no
access to any raw data, (ii) the cloud server never requests
for decrypted data from the client, and (iii) during query
processing, the raw data always remain encrypted. Hence,
even if the cloud is fully compromised, in the CrypSH, the
attacker cannot retrieve the raw data.

3.4 Design and Security Goals

The objective of the CrypSH is to give a solution to basic
security during secret storing of data in the cloud and



6

prevent replay attacks while retrieving and sharing secret
information. The essential properties of a cloud based IoT
system required for maintaining basic security goals are as
follows:

Authentication: To ensure that the shared data are coming
from a reliable source, the CrypSH should provide the
authenticity of the IoT devices. Specifically, the ICA should
verify the authenticity of the IoT devices

Confidentiality: To ensure the confidentiality of shared
data, the CrypSH should protect the IoT data stored in
the cloud, i.e., neither external adversaries nor internal
adversaries should be able to access IoT data. In fact, the
CrypSH is designed in such a way that in case an IoT device
is compromised and the group key information is revealed,
only the data associated with the compromised device and
the group is exposed.

Integrity: To ensure that correct data are received from
the cloud, the CrypSH should provide integrity. Particularly,
the IoT device should be able to detect any modification of
data during communication with the cloud.

Data Freshness: The data received by an IoT device at
a particular time should be recent data and not old data,
which may be replayed by the adversaries.

3.5 Assumptions

In this work, we assume that the cloud is honest but cu-
rious [6], [7]. Without loss of generality, we also assume
that an adversary does not collude with the parties that
hold the secret/private key of the BGN cryptosystem, as we
cannot protect this type of attack by using any encryption
scheme. Furthermore, we assume that the ICA correctly
authenticates the IoT devices and publishes the public key
of other IoT devices for generating re-encryption tokens.
Finally, under normal scenario, the CrypSH assumes that
the application behaves correctly and does not reveal keys
to malicious users/clients.

4 THE PROPOSED SCHEME: CRYPSH
In this section, we present a detailed description of the
CrypSH. Particularly, in Section 4.1, we discuss the process-
ing and sharing mechanisms of encrypted data. Section 4.2
presents the key revocation mechanism. In Section 4.3, we
put forward a group sharing mechanism. Finally, we discuss
the homomorphic operations in Section 4.4.

4.1 Processing and Sharing of Encrypted Data

This section illustrates how the CrypSH encrypts and shares
the user data. Our CrypSH scheme operates in two modes:
standard and sharing. The standard mode of operation cov-
ers the single-key case, whereas the sharing mode enables
cryptographically protected sharing.

4.1.1 Standard Mode
A CrypSH client selects this mode of operation when it
requires to upload the data in the cloud and retrieve data
from the cloud as illustrated in Fig. 3. It consists of three
phases, namely, initialisation, encryption and decryption.
The detailed description of the three phases is given below.

i-th Client
Cloud

Sum/Multiplication

m2

m1Encrypt m1+m2/m1   m2m1 Decrypt m1+m2/m1  m2

i-th Client

i-th Client

i-th Clienti-th Client

i-th Client's Public Key i-th Client's Private Key

Fig. 3. Standard mode of operation. The data is encrypted and de-
crypted using i-th client’s public and private keys, respectively. Com-
putations on ciphertexts take place in the cloud.

Initialisation Phase: In the initialisation phase, all the
CrypSH clients initially register themselves with the ICA.
Before starting of the registration process, the ICA publishes
its public key through the following process.

• The ICA picks two distinct prime numbers x′ and y′

such that x′ = 2x + 1 and y′ = 2y + 1, where x and
y are two distinct numbers.

• We select e as a bilinear map such that e : Zn×Zn →
Z∗n, where Zn and Z∗n are groups of order n = x′y′.
The ICA computes λ = xy, chooses a random gener-
ator g ∈ Zn with order λ. Subsequently, it computes
η = gy mod n and η is the random generator of Zn.

• The ICA publishes the public key pkICA = (n, g, η)
and stores the private key prkICA = x.

After publication of the public key by the ICA, each
CrypSH client performs the following steps for registering
themselves with the ICA as well as to generate system
parameters.

• An i-th client randomly picks two distinct prime
numbers p′i and q′i such that p′i = 2pi+1, q′i = 2qi+1,
where pi and qi are distinct numbers, and computes
ni = p′iq

′
i and λi = piqi, chooses a random generator

gi ∈ Zni
with order λi. Subsequently, it computes

ηi = gqii mod ni and ηi is the random generator of
Zni

.
• An i-th client calculates Pi = gp

′
i mod n, Qi = gq

′
i

mod n and αi, where αi is the current time stamp.
• An i-th client then sends pki = (ni, gi, ηi, Pi, Qi, αi)

to the ICA as its own public key and stores pi as the
private key prki.

• After receiving pki from i-th client, the ICA per-
forms the authentication of the i-th client if ni =
(Pi, Qi)

x = p′iq
′
i holds. If the authentication is suc-

cessful, the ICA publishes (ni, gi, ηi, Pi, Qi, αi) as the
public key of the i-th client, otherwise, discards the
registration process of the i-th client.

Encryption Phase: An i-th client in CrypSH executes the
following steps to produce the ciphertext ci of the message
m. We assume that the message space consists of integers in
the set {0, 1, · · · , T}, where T is an integer and T < qi.

• An i-th client first randomly chooses a number ri ∈
Zni .

• Then, i-th client calculates ci = E(m) = gi
mηi

ri

mod ni.
• After determining the ciphertext, ci, the i-th client

stores it in the cloud.
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Decryption Phase: During decryption, the i-th client exe-
cutes the following process on the ciphertext ci to extract
the message m.

• The i-th client first computes cpii = (gi
mηi

ri)pi =
(gi

pi)m.
• The i-th client solves the discrete logarithm of

(gi
pi)m mod ni with the base gi

pi using the Pol-
lard’s lambda algorithm and produces the message
m = D(ci).

Note that the decryption time in the BGN cryptosystem
depends on the size of the message space. Typically, the
message space in the CrypSH is varied between 32 to 64-bit
(see Section 6.2) for efficient decryption. Further, to reduce
the decryption time, we precompute a table of powers of
gi
pi , so that the solution of the discrete logarithm occurs in

constant time.

4.1.2 Sharing Mode
As mentioned earlier, CrypSH is based on the BGN cryp-
tosystem, so it supports both addition and multiplication
operations on the encrypted data during sharing mode. This
enables cryptographic protected sharing of encrypted data,
without the need to disclose any private key to the cloud.
Our sharing mode consists of two phases, i.e., the token
generation and re-encryption, as depicted in Fig. 4. In the
first phase, the i-th client generates the re-encryption token
for the intended client, say j-th (where i 6= j), based on
its own private key and the j-th client’s public key. The re-
encryption token is generated as follows.

• Given the private key pi of the i-th client and the
attributes αj and gj of pubic key of the j-th client,
we generate the re-encryption token as:

Tokeni→j = g
αj/pi
j ∈ Zni

.

Next, the cloud with access to the Tokeni→j performs
the re-encryption as follows:

cshi = (g′j , g
αj/pi
j ), (1)

where g′j = e
(
ci, g

1/pi
j

)
= e (ci, gj)

1/pi . The j-th client can
now decrypt the ciphertext cshi with its own private key and
the pairing e as:(

g
αj/pi
j

)1/αj

g′j
=

(
g
αj/pi
j

)1/αj

e(ci, gj)
1/pi

= cpii .

Finally, the j-th client solves the discrete logarithm of cshi
using the Pollard’s lambda algorithm and produces the
message m.

In the CrypSH, the re-encryption tokens are unidi-
rectional and non-transitive. Specifically, we design the
CrypSH in such a way that using Tokeni→j it is only possi-
ble to re-encrypt i-th client’s ciphertext ci to j-th client’s ci-
phertext cshi . The inverse operation is cryptographically not
feasible. In case there is a replay attack, the attacker captures
the re-encrypted ciphertext and tries replaying the same to
the j-th client during the next round of communication. The
j-th client decrypts the re-encrypted ciphertext using the
time stamp generated during the current registration phase.

i-th	Client
Cloud

Re-encrypt

m1

Gen.	Token m1 Decrypt

j-th	Client

i-th	Client

j-th	Client

i-th	Client's	Private	Key

j-t
h	
C
lie
nt
's	
Pu
bl
ic
	K
ey

m1

Fig. 4. Sharing mode of operation. The i-th client generates a token
based on its own private key and the j-th client’s public key. The cloud
re-encrypts i-th client’s data as j-th client’s data. A similar technique is
used during group sharing.

Since both the time stamps are not the same, the j-th client
understands that a replay attack has taken place and ensures
data freshness.

4.2 Key Revocation
In this section, we present the key revocation mechanism,
i.e., the key update and in-situ key update.

4.2.1 Key Update
In the CrypSH, we employ a strategy for key update similar
to the one proposed in [6]. Specifically, when the IoT devices
decide to cancel a data sharing operation, they simply begin
using a new key for new data. This prevents previously
shared tokens in the cloud from being outdated and pre-
vents new ciphertexts from being re-encrypted with the old
token. Once the old key is updated by the new key in the
ICA, valid sharing relationships are also updated with the
new token in the cloud such that the sharing flow continues.
Furthermore, in the CrypSH, a key revocation operation
is triggered once the encryption key of an IoT device is
compromised.

We consider two cases for the key update: (i) the ma-
licious cloud, and (ii) the semi-honest cloud. In the first
case, we leave old data protected with the old key as data
is already shared and perhaps cached in the sharing IoT
devices. However, in case of the semi-honest cloud, it is
necessary to update the encryption key of the old data
with the fresh key for steady access. It is thus important to
develop a secure scheme that allows the semi-honest cloud
to perform the re-keying operation without access to any
private key.

4.2.2 In-situ Key Update
During our re-encryption process, we assume that the i-th
client has access to both the old and new private keys pi and
p∗i , respectively. Since the private key is not revealed to any
IoT devices, therefore, during our re-encryption process, the
private key of the i-th client is not compromised.

In the CrypSH, the re-keying operation is performed on
encrypted data stored in the cloud end prior to the sharing
operation. The i-th client generates a key update token τ =

g
pi/p

∗
i

i and sends it to the cloud. The cloud performs the re-
keying operation by modifying cshi given in (1) as follows:

crki = τ
(
g′j , g

αj/pi
j

)
.



8

Once the re-keying operation is finished, all the ci-
phertexts at the cloud end are now encrypted with the
updated key. It is worth noting that, unlike re-encryption
operation, re-keying operation is transitive. In particular,
we can perform the re-keying operation any number of
times on the same encrypted data. It is also worth noting
that, as only the i-th client is aware of both the old and
new key pairs, so a curious DBA can not obtain any infor-
mation about the private key from the key update token.
However, a malicious DBA could perform frequency based
attack [31] by reversing the key update token and disclosing
the encrypted ciphertexts using updated key from earlier
key. We refer to the readers to [31] for the state-of-the-art
solution on frequency based attack. Detailed discussion on
the mitigation technique is out of the scope of this work.

4.3 Group Sharing

As mentioned in Section 3.1, data in the CrypSH can be
shared either with an IoT device or a group of IoT devices. In
this section, we design a sharing authorisation mechanism
to enable group sharing operations. To start with, we discuss
the structure of the authorisation mechanism. It is important
to design a proper structure of the authorisation mechanism
since it ensures that a joining IoT device (i) issues the re-
encryption token for the genuine group and (ii) retrieves
the correct group key. Our sharing authorisation mechanism
is based on the access graph [32]. We initially create an
access graph for each group of IoT devices, where the
root node is the group initiator, as shown in Fig. 5. We
identify each group by the group initiator’s ID. The IoT
devices joining the group form the access graph nodes.
Each joining IoT device is registered under the immediate
parent node, whereas the root node is registered under the
ICA. The access graph allows the group members to access
membership information of other members. After forming
the access graph, the next important step is: how an IoT
device will join the group or leave the group? We discuss
the solution in the next subsection.

(IDinitiator, pkinitiator)signedbyinitiator 

(IDmember1, pkmember1)signedbyinitiator  (IDmember2, pkmember2)signedbyinitiator 

(IDmember3, pkmember3)signedbyinitiator  (IDmember4, pkmember4)signedbyinitiator 

Fig. 5. Example of access graph for group sharing.

4.3.1 Joining Group
We follow a similar strategy during joining of an IoT device
in a group as given in [6]. However, unlike [6], the group ini-
tiator is responsible for authorising the new group member
during the joining phase in the CrypSH. The authorisation
is performed in two steps: (i) signing the extended identity
(i.e., IDinitiator name) and the public key of the new mem-
ber (verified from the ICA) and (ii) issuing a re-encryption
token and storing the re-encryption token in the cloud. For

the sake of clear illustration, we here introduce an example
to demonstrate our proposed concept. Let us assume that
Alice is the initiator of the new group and Bob wants to join
the group. Alice first generates the identity, IDg , the public
key, pkg , and the private key, prkg , of the group. Alice then
generates a re-encryption token, Tokeng→b, for the group
and stores it in the cloud. After receiving a joining message
from Bob, Alice first verifies the public key of Bob from the
ICA. Upon successful verification, Alice authorises Bob to
access several information stored in the cloud related to the
group through sharing of the Tokeng→b. Specifically, the
information stored in the cloud is as follows:

(IDg, pkg, ENCg(prkg))signed−by−initiator ,

where ENCg(prkg) is the encrypted private key of the
group. After authorisation, Bob joins as a new member of
the group, IDg . Bob then provides a re-encryption token,
Tokenb→g , needed for sharing with the group. To issue this
re-encryption token and subsequent decrypting of group
data, Bob uses the public key, pkg , and the private key,
prkg , of the group. It is worth noting that Alice’s (i.e.,
group initiator) signature on the key information prevents
an attacker in misleading Bob into issuing a token for a
malicious group with the same name.

4.3.2 Leaving Group
To leave the group, an IoT device initiates the key revocation
mechanism, as presented in Section 4.2.1. Upon completion
of the key revocation mechanism, new data are encrypted
with the new key. However, older data of the leaving IoT
device will remain in the cloud and can still be used by the
group members. If the leaving IoT device decides to stop
sharing the old data with the group members, then it trig-
gers the in-situ key update mechanism (see Section 4.2.2).

4.4 Homomorphic Operation

In this section, we first present the homomorphic prop-
erties of the BGN cryptosystem in Section 4.4.1. We then
discuss how the CrypSH performs the homomorphic opera-
tions, i.e., addition and multiplication on ciphertexts in Sec-
tion 4.4.2 and Section 4.4.3, respectively. The homomorphic
encryption is a type of encryption scheme, which allows
a third party, e.g., cloud to perform certain computable
functions on the encrypted data [10]. Unlike the Pilatus
and Kryptein, the CrypSH supports an arbitrary number of
additions and one multiplication operation, as it considers
the BGN cryptosystem as the underlying encryption mech-
anism.

4.4.1 Homomorphic Properties of BGN
The homomorphic properties of the BGN cryptosystem are
as follows:

Homomorphism over Addition: The homomorphic addition
of plaintexts m1 and m2 using ciphertexts E(m1) = c1 and
E(m2) = c2 are performed as follows:

c = c1c2η
r = (gm1ηr1)(gm2ηr2)ηr

= gm1+m2ηr1+r2+r,
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where c is the ciphertext. According to the property, any-
one can retrieve the addition of plaintexts m1 and m2 by
decrypting c.

Homomorphism over Multiplication: The homomorphic
multiplication of plaintexts m1 and m2 using ciphertexts
E(m1) = c1 and E(m2) = c2 are performed as follows:

c = e(c1, c2)η
r
1 = e(gm1ηr1 , gm2ηr2)ηr1

= gm1m2
1 η1

m1r2+m2r1+β̃q1r1r2+r,

where β̃ ∈ Zn. Here, ciphertext c is uniformly distributed
encryption of m1 × m2. Thus, any one can retrieve the
multiplication of plaintexts m1 and m2 by decrypting c.

4.4.2 Addition Operation in the CrypSH

Let i-th client intends to share the addition of plaintexts
m1 and m2 with the j-th client via the cloud. Initially, i-
th client encrypts m1 and m2 using the CrypSH (see Sec-
tion 4.1.1) and the resulting ciphertexts cm1 = E(m1) and
cm2 = E(m2) are stored in the cloud. In the next step, the
i-th client generates a token, Tokeni→j , and shares it with
the cloud. After receiving the token, the cloud first performs
homomorphic addition operation using ciphertexts cm1 and
cm2 as follows:

cm1+m2 = cm1cm2η
r
i = (gm1

i ηi
r1) (gm2

i ηi
r2) ηri

= gm1+m2
i ηr

′

i ,

where r′ = r1+r2+r. Cloud then re-encrypt cm1+m2 using
Tokeni→j as follows: caddi→j = (g′j , g

αj/pi
j ) (see Section 4.1.2)

and send caddi→j to j-th client. Upon receiving caddi→j , j-th client
decrypt it with its own private key and the pairing e (see
Section 4.1.2), and recovered result will be m1 +m2.

4.4.3 Multiplication Operation in the CrypSH

Let the i-th client intends to share multiplication of plain-
texts m1 and m2 with the j-th client via the cloud. Similar
to the addition operation, during multiplication, the i-th
client first encryptsm1 andm2, and the resulting ciphertexts
cm1 and cm2 are stored in the cloud. Also, the i-th client
generates a token, Tokeni→j , and sends it to the cloud. After
receiving the token, the cloud performs the homomorphic
multiplication operation using ciphertexts cm1 and cm2 as
follows:

cm1×m2 = e(cm1, cm2)η
r
1 = e(gm1

i ηi
r1 , gm2

i ηi
r2)ηr1

= gm1m2
1 η1

m1r2+m2r1+βqir1r2+r

= gm1m2
1 η1

r′ ,

where β (∈ Zni) is a random number and r′ = m1r2 +
m2r1 + βqir1r2 + r. The cloud then re-encrypts cm1×m2

using the Tokeni→j and sends the resultant cmuli→j to j-th
client. After receiving cmuli→j , j-th client decrypts it with its
own private key and the pairing e (see Section 4.1.2), and
the recovered result will be m1×m2. It is worth noting that
cm1×m2 is in the group Z∗ni

instead of Zni
. Hence, no more

homomorphic multiplication operation is allowed in Z∗ni

since there is no pairing from the group Z∗ni
. Interestingly,

resulting ciphertext cm1×m2 in Z∗ni
still allows any number

of homomorphic addition operations.

5 SECURITY ANALYSIS OF CRYPSH
In this section, we analyse the security of the CrypSH
based on the threat model and the security goals presented
in Section 3.2 and Section 3.3, respectively. At first, in
Section 5.1, we show that the CrypSH is secure against
indistinguishability under the chosen plaintext attack [33]
and unforgeability under the adaptive chosen message at-
tack [34]. We then analyse the authentication and integrity,
confidentiality and data freshness in Section 5.2, Section 5.3
and Section 5.4, respectively.

5.1 Security Theorem

Theorem 1. The proposed CrypSH is secure against indis-
tinguishability under the chosen plaintext attack, if the BGN
cryptosystem is secure against indistinguishability under a chosen
plaintext attack.

Proof. By proof of contradiction, we assume that an adver-
sary A runs a polynomial time algorithm B to break the
security of the CrypSH with advantage ε(τ). Particularly,
given an instance (n, g, η) of the discrete logarithm problem,
A runs B to determine q ∈ Zn such that η = gq mod n.
Given (n, η, e, Zn, Z

∗
n) as input, algorithm B works as fol-

lows:

• The algorithm B chooses a random generator
g ∈ Zn and gives algorithm B the public key
(n, g, η, e, Zn, Z

∗
n).

• The algorithm B then generates two messages
m0,m1 ∈ {0, 1, · · · , T} to whichA sends with the ci-
phertext cmb

= gmbηrmb mod n ∈ Zn for a random
b

R←− {0, 1} and random rmb

R←− {0, 1, · · · , n− 1}.
• Finally, the algorithm B outputs its guess b′ for actual

b. If b′ = b, A successfully retrieves the plaintext
message; otherwise, b′ 6= b, when A fails to retrieve
the plaintext message.

It is worth mentioning that when η is uniform in Zn,
the challenged ciphertext cmb

is uniformly distributed in
Zn and is independent of the bit b. Thus, in this case, the
probability that A correctly guesses the plaintext message is
1/2 [11]. Conversely, when η is uniform in the q-subgroup
of Zn, the probability that A correctly guesses the plaintext
message is greater than 1/2 + ε(τ) [11]. At the beginning
of the proof, we assume that A can break the security of
the CrypSH with advantage ε(τ), which is contradicting the
calculated probability. Hence, the CrypSH is semantically
secure against the chosen plaintext attack.

Theorem 2. The proposed CrypSH is semantically secure against
the adaptive chosen message attack, if the discrete logarithm
problem is hard.

Proof. In Theorem 1, we show the steps that an adversary A
follows to guess the plaintext message. The correct guessing
is only possible when A can solve the discrete logarithm
problem. We show that the probability of correct guesses
of the plaintext message is 1/2 when η is uniform in Zn.
Whereas the probability of correct guesses of the plaintext
message is 1/2 + ε(τ) when η is uniform in the q-subgroup
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of Zn. These contradict the hardness of the discrete loga-
rithm problem [28]. Thus, the CrypSH is semantically secure
against the chosen message attack.

5.2 Authentication and Integrity
To ensure that the shared data is coming from a reliable
source and without any modification, the CrypSH should
provide the authenticity of the IoT devices and integrity
of data. In the CrypSH, authenticity of the IoT devices is
verified in two ways. First, the ICA verifies the authenticity
of the IoT devices. Second, during sharing mode, an IoT
device verifies the authentication of another IoT device.
Whereas the cloud and the IoT device collaboratively check
the integrity of data. In the CrypSH, during the initialisation
phase (Section 4.1), first the ICA publishes its public key,
(n, g, η) for IoT devices. An i-th IoT device in turn registers
itself by sending its own public key, (ni, gi, ηi, Pi, Qi, αi).
After receiving the public key of the i-th IoT device, the
ICA verifies if (Pi, Qi)

x = p′iq
′
i holds for i ∈ {1, . . . , N}.

If verification is successful, then the i-th IoT device is
allowed to participate in the standard and sharing modes of
operations. Otherwise, the ICA aborts the verification phase
of the i-th IoT device. In summary, the CrypSH allows only
the authentic IoT devices to register themselves in the ICA.

The CrypSH uses the BGN as the underlying crypto-
graphic scheme, where a plaintext is encrypted using the
private key of a particular IoT device and the resultant
ciphertext is stored in the cloud. Theorem 2 shows that no
adversary can produce the plaintext by solving the discrete
logarithm problem. Hence, any tampering of the plaintext
can be detected by the authentic IoT device. Therefore, the
designed CrypSH can ensure the integrity of the message.

5.3 Confidentiality
An adversary, say A, can access the public key of
the ICA and the i-th IoT device, i.e., (n, g, η) and
(ni, gi, ηi, Pi, Qi, αi), respectively. In addition, an adversary
can access the ciphertext of the i-th IoT device, i.e., ci. How-
ever, based on Theorem 1, an adversary cannot remove ηiri
mod ni from ci = gi

mηi
ri mod ni. Even if it is possible

to extract ηiri mod ni, but due to the hardness of solving
the discrete logarithm problem (see Theorem 2), it is thus
quite impossible to extract an IoT datamwithout employing
the private key, i.e., pi. Therefore, the designed CrypSH is
capable of providing data confidentiality.

5.4 Data freshness
We intend to protect the CrypSH from replay attacks, where
the attacker tries re-transmitting a previously-transmitted
valid packet [35]. We prevent replay attacks by ensur-
ing data freshness. We use a time stamp to check the
data freshness. In standard mode, during the registration
phase, only the authentic IoT devices are allowed to reg-
ister themselves with the ICA by sending the public key,
pki = (ni, gi, ηi, Pi, Qi, αi). In the public key, αi attribute
represents the time stamp of the i-th IoT device, which
is used for checking data freshness. During the sharing
mode, an i-th IoT device generates a re-encryption token

based on the current time stamp of the intended IoT device
accessed from the ICA. The cloud uses the token to re-
encrypt the encrypted shared packet. Upon receiving the
encrypted shared packet, the receiver verifies the time stamp
of the re-encrypted shared packet with its own time stamp.
If the verification is unsuccessful, the receiver realises that a
replay attack has been performed and it discards the packet.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
CrypSH under practical cloud-IoT application scenarios.
We compare the CrypSH with our main competitor, the
Pilatus [6].

6.1 Experimental Setup
Our experimental evaluation setup consists of the client
engine running with the Contiki 3.0 [36], which is an open
source operating system for the IoT devices. We run our
client engine on an Ubuntu 14.04 with 8 GB of RAM in a
Dell XPS laptop with Intel Core i7 processor running at 2.4
GHz. In our experiments, we considered an IoT device with
similar specifications as Texas Instrument SensorTag [37].
Conversely, our cloud server resides on a normal desktop,
i.e., AMD Athlon workstation with 8 GB RAM, running
MySQL database on 64-bit Ubuntu 14.04. We connect both
the client engine and the cloud server via the internet
with an average transmission delay of 10 ms [6]. Similar
to [6], our experimental results are based on single-threaded
execution times, as most of the existing libraries do not have
an efficient multi-threaded implementation. To make the
experiment results more realistic, we use a publicly available
state-of-the-art HElib library [38]. Further, we use the THEW
database [39] as a source of real data. THEW is a large col-
lection of 24 hours anonymized heartbeat recordings of real
patients. For our experiment, we extracted approximately
30 minutes to 1 hour heartbeat data for 50 patients (roughly
4 K data records for each patient).

For implementing our CrypSH, we select two prime
numbers x′ = 2x + 1 and y′ = 2y + 1, where x and y
are also prime numbers of size 128-bit. Next, we compute n,
where n = x′y′. For the BGN cryptosystem, we select e as
a bilinear map such that e : Zn × Zn → Z∗n defined on the
super-singular elliptic curve E : v2 = u3 + au+ b, where a
and b are chosen such that 4a3 + 27b2 6= 0.

6.2 Performance Metrics
Evaluation of the performance of CrypSH and Pilatus is
divided into several stages. First, we evaluate the com-
putation overhead of the schemes. Here, the computation
overhead is measured using the three metrics: (i) the time
required for key generation, (ii) the time required to upload
encrypted data into the cloud and (iii) the time required for
encryption/decryption operation. Second, we evaluate the
storage overhead of both the competing schemes. To mea-
sure the storage overhead, we consider ciphertext size as a
performance metric. Additionally, we measure the energy
overhead, system throughput, data freshness and end-to-
end delay for both schemes. We define the throughput as
the rate of operation on encrypted data performed in the
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cloud. We are the first to measure the data freshness for
the cloud based IoT systems. Similar to [35], we define the
data freshness as the percentage of the number of encrypted
data received by an IoT device containing current data out
of the total number of data sent by the cloud during one
communication cycle. Following the recommendation by
NIST [40], we use 128-bit security for encrypting data in
both the CrypSH and Pilatus. We generate the plaintext
inputs randomly and uniformly for two integer inputs, viz.,
32-bit and 64-bit sizes. Extensive simulation is performed
with a 95% Confidence Interval (CI) and average results of
100 independent runs are taken in plotting the results.

6.3 Computation Overhead

In this section, we discuss the performance of both the
CrypSH and Pilatus in terms of computation overhead.
Here, we measure the computation overhead using three
metrics, as mentioned in Section 6.2.

6.3.1 Key Generation

We first evaluate the average setup time required to generate
the keying materials for both the CrypSH and Pilatus, the
results of which are shown in Table 2. Table 2 shows that
irrespective of the mode of operations, the CrypSH requires
less setup time compared to the Pilatus. For example, in
standard mode of operation, the CrypSH requires 0.39 ms
to generate the keying material, whereas the Pilatus requires
0.57 ms. Similar kind of results are also observed during the
key setup and token generation phases of sharing mode of
operation. The probable reason for 0.18 ms additional time is
that the Pilatus relies on several optimized algorithms. Also,
the key generation operation does not take place frequently
in contrast to the encryption and decryption operations.

TABLE 2
Average setup time for 128-bit security level

Scheme Mode of operation Setup time [ms] CI [ms]

Pilatus
Standard 0.57 [0.53, 0.60]
Sharing: Key setup 6.48 [5.99, 6.97]
Sharing: Token gen. 4.41 [4.10, 4.72]

CrypSH
Standard 0.39 [0.36, 0.42]
Sharing: Key setup 4.02 [3.78, 4.26]
Sharing: Token gen. 2.61 [2.41, 2.85]

6.3.2 Cloud Database

Table 3 shows the total time required to upload the en-
crypted real time heartbeat data in the cloud database for
both the competing schemes. We notice that the CrypSH
requires less time than the Pilatus for both the modes of
operations. Overall, the sharing mode is slower than the
standard mode. In particular, during the standard mode of
operation, the Pilatus is slower than the CrypSH by a factor
of 2.24. In contrast, in the sharing mode of operation, the
Pilatus is slower than the CrypSH by a factor of 2. This
indicates that the CrypSH is faster than the Pilatus in both
the modes of operations.

TABLE 3
Average time to upload data into the cloud database

Scheme Mode of operation Time [ms] CI [ms]

Pilatus
Standard 4.16 [3.66, 4.68]
Sharing: Key setup 13.08 [11.52, 14.65]
Sharing: Token gen. - -

CrypSH
Standard 2.05 [1.84, 2.26]
Sharing: Key setup 6.52 [5.85, 7.17]
Sharing: Token gen. - -

6.3.3 Encryption and Decryption Times
Figure 6(a) shows the performance of the standard mode as
discussed in Section 4.1.1. Whereas, Fig. 6(b) shows the per-
formance of the sharing mode as discussed in Section 4.1.2.
While plotting Fig. 6, we consider 32-bit and 64-bit input
integer sizes, and 128-bit security level. Further, we consider
the encryption and decryption operations involved in both
the modes. We observe from Figure 6 that the CrypSH
outperforms the Pilatus for both encryption time and de-
cryption time. Specifically, during the standard mode, the
CrypSH requires 34% and 10% less time for encryption and
decryption operations, respectively, compared to the Pilatus.
Similarly, during the sharing mode Figure 6(b), the time
required for encryption and decryption operations is 34%
and 14.81% less in the CrypSH compared to the Pilatus.
Further, irrespective of the schemes, we observe that the
time required for encryption and decryption operations is
more in the sharing mode than the standard mode. More
importantly, irrespective of the modes, the time required for
decryption operation is less than the encryption operation
in the CrypSH. The reason is that, we precompute a table
of powers of gipi to speed up the execution of the discrete
logarithm algorithm for the i-th client

6.4 Storage Overhead

We measure the storage overhead of both the CrypSH and
the Pilatus considering the ciphertext size as performance
metric. Figure 7 shows the ciphertext sizes of CrypSH and
Pilatus for the standard and sharing modes, respectively.
We notice from the plots of the CrypSH that during the
standard mode of operation, each plain text input needs a
different number of congruences, resulting in a ciphertext
size between 140 and 190 bytes. Whereas, for sharing mode
of operation, the ciphertext size varies between 500 and 700
bytes. On the contrary, in the Pilatus, during standard and
sharing modes, the ciphertext sizes vary between 150 and
220 bytes, and 600 and 900 bytes, respectively. It means that
the performance of the CrypSH is improved by reducing
the ciphertext sizes to 13% and 25% compared to the Pilatus
during the standard and sharing modes, respectively.

6.5 Energy Overhead

In our experimental setup, we use the values of our re-
quired parameters for SensorTag as described in [37]. For
example, in receiving mode and transmitting mode, we
use the current drawn as 6 mA and 6.1 mA, respectively.
Table 4 shows the energy measurements of the CrypSH
and Pilatus for 32-bit and 64-bit input message sizes. The
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Fig. 6. Encryption and decryption time evaluation. The client engine performs encryption and decryption of data.
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Fig. 7. Storage overhead comparison between CrypSH and Pilatus under different input lengths.

TABLE 4
Energy consumption of data protection component

Scheme 32-bit Integer input CI [mJ] 64-bit Integer input CI [mJ]
Pilatus 12.4 mJ [11.2713.62] 25.16 mJ [22.87, 27.94]
CrypSH 9.5 mJ [8.79, 10.44] 19.81 mJ [18.34, 21.77]

results show that with the increase in input message sizes,
the energy overhead increases almost linearly irrespective
of the schemes. It is obvious because communication over-
head created with increasing input message sizes results in
increase in energy consumption. From the energy overhead
perspective, the CrypSH outperforms the Pilatus for both
the input message sizes. Specifically, the CrypSH consumes
30.52% and 27.05% less energy than the Pilatus for 32-bit
and 64-bit input message sizes, respectively. The reason for
more energy consumption is due to the fact that the Pilatus
relies on additional steps for solving the Chinese Remainder
Theorem and the Baby-Step-Giant-Step algorithm [6] during
encryption and decryption processes.

6.6 Throughput
Figure 8 shows the throughput of the cloud running on a
normal desktop when executing SUM SQL queries, either
over plaintext or encrypted data. During measuring of
throughput, we generate variable length queries like sum-
mands and measure the time to process each, and calculate

the average throughput of the cloud for a single connection.
Further, for measuring throughput, we initiate the queries
locally from the IoT device to the cloud over the Internet.

The results show that with the increase in the number
of queries, plaintext SUM operations are roughly 2 times
faster compared to the CrypSH and Pilatus. It is due to
the fact that the plaintext SUM operations are performed
parallelly. However, during the standard SUM operation,
the throughput of the CrypSH is 16% more than the Pilatus.
Similar kind of results is also found in pre-sharing SUM
and post-sharing SUM operations. Specifically, during the
pre-sharing SUM operations, the throughput of the CrypSH
improves by 15% than the Pilatus. Whereas in the post-
sharing SUM operations, it is 20% more in the CrypSH
compared to the Pilatus.

6.7 Data Freshness
Figure 9 presents the results of data freshness. The experi-
mental results are collected while the normal operations are
carried out by the IoT devices and the cloud, i.e., irrespective
of the standard mode and the sharing mode. While evaluat-
ing data freshness, we varied the number of malicious IoT
devices from 2 to 10. The plots show that data freshness
decreases with the increase in malicious nodes. Particularly,
in presence of 2 malicious IoT devices, the average data
freshness is 99.18% , whereas its values are 98.20% and
97.11% for 5 and 10 malicious IoT devices, respectively. It is
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due to the fact that as the number of malicious IoT devices
increases, the number of attempts made by them to send
data repeatedly increase resulting in a decrease of number
of received packets containing current data.

6.8 End-to-End Delay
Figure 10 presents the end-to-end delay for varying SUM
queries. For both the schemes, plots show that the end-to-
end delay increases with the increase in number of items per
query. For lower range SUM queries (i.e., <200), we observe
that the end-to-end delay of the standard and sharing modes
are close to queries over plaintext for both the CrypSH
and Pilatus. However, for larger ranges (i.e., >600), the
end-to-end delay increases abruptly. For example, in the
CrypSH, the average end-to-end delay of the standard and
sharing modes over plaintext increase by a factor of 1.95
and 2.22, respectively. Whereas in the Pilatus, it increases
by a factor of 2.24 and 2.44. In summary, end-to-end delay
of the CrypSH is 14.87% and 11.07% less than that of the
Pilatus. Note that to ensure a seamless interaction among
the IoT devices with encrypted data, the end-to-end delay
should be <1 s [6].

7 CONCLUSION

In this paper, we present CrypSH, a new scheme tailored
for the cloud based IoT systems. The CrypSH provides an
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efficient, and highest level of security and reliability from
the three significant threats, i.e., the curious DBAs, eaves-
dropping from the communication channel and arbitrary
compromises of the cloud server confronting cloud applica-
tions. Our scheme leverages cryptographic primitives that
allow computation on encrypted data without disclosing
any secret keys to the cloud. Also, our scheme processes
queries on encrypted data and re-encrypts it for sharing. In
the CrypSH, sharing mechanism comes with cryptographic
guarantees and possibility of sharing revocation at any
time. To achieve this, unlike other encryption schemes, the
CrypSH takes the BGN cryptosystem as the underlying
encryption mechanism. The evaluation results show that the
CrypSH outperforms the state-of-the-art approach, Pilatus,
without compromising network performance metrics such
as throughput and data freshness. Particularly, the CrypSH
is 34% more computationally faster, requires 25% less stor-
age and provides 15% more throughput than the Pilatus. In
future, we envision to devise a mechanism for parallelising
the homomorphic addition in the cloud.
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