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Cryptomining cannot Change its Spots: Detecting
Covert Cryptomining using Magnetic Side-channel

Ankit Gangwal and Mauro Conti, Senior Member, IEEE

Abstract—With new cryptocurrencies being frequently intro-
duced to the market, the demand for cryptomining - a funda-
mental operation associated with most of the cryptocurrencies -
has initiated a new stream of earning financial gains. The cost
associated with the lucrative cryptomining has driven general
masses to unethically mine cryptocurrencies using “plundered”
resources in the public organizations (e.g., universities) as well
as in the corporate sector that follows Bring Your Own Device
(BYOD) culture. Such exploitation of the resources causes finan-
cial detriment to the affected organizations, which often discover
the abuse when the damage has already been done.

In this paper, we present a novel approach that leverages mag-
netic side-channel to detect covert cryptomining. Our proposed
approach works even when the examiner does not have login-
access or root-privileges on the suspect device. It merely requires
the physical proximity of the examiner and a magnetic sensor,
which is often available on smartphones. The fundamental idea
of our approach is to profile the magnetic field emission of a
processor for the set of available mining algorithms. We built a
complete implementation of our system using advanced machine
learning techniques. In our experiments, we included all the
cryptocurrencies supported by the top-10 mining pools, which
collectively comprise the largest share (84% during Q3 2018) of
the cryptomining market. Moreover, we tested our methodology
primarily on two different laptops. By using the data recorded
from the magnetometer of an ordinary smartphone, our classifier
achieved an average precision of over 88% and an average
F1 score of 87%. Apart from our primary goal - which is to
identify covert cryptomining - we also performed four additional
experiments to further evaluate our approach. We found that
due to its underlying design, our system is future-ready and can
readily adapt even to zero-day cryptocurrencies.

Index Terms—Altcoin, Bitcoin, Cryptocurrency, Detection, Ma-
chine learning, Mining.

I. INTRODUCTION

AS opposed to the fiat currencies - which are typically
issued by centralized financial institutions - cryptocur-

rencies are decentralized and generally rely on distributed
public ledgers, in which transactions are validated by a process
called cryptomining, or simply mining. Essentially, mining is
a process of contributing computational resources to perform
heavy computations, which continuously consumes electricity.
For the effort of mining, successful miners receive newly
generated cryptocoins as a reward. Numerous cryptocurrencies
have emerged after the success of Bitcoin, and thus, the
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possibilities of mining and earning incentives. Cryptocurren-
cies such as Application-Specific Integrated Circuit (ASIC)
resistant Monero enables mining feasible on web-browsers,
which allows even naive users to mine.

Motivation: Apart from investment in hardware, the cost of
electricity to power up mining hardware and cooling facilities
is one of the significant expenses associated with mining [1].
Mining popular cryptocurrencies, such as Bitcoin, is not prof-
itable using personal resources (mainly electricity) unless the
mining is done using specialized hardware [2]. However, min-
ing can be lucrative if it is done using “plundered” resources,
e.g., exploiting infrastructure at workplace. We can broadly
categorize such plundering into two classes: conscious-mining
and unconscious-mining. Conscious-miners exploit infrastruc-
ture allocated to them, e.g., an unethical employee who mines
at the workplace. On the other side, unconscious-miners mine
unknowingly for a third party, e.g., the visitors to a website
that hosts cryptojacking scripts. In the market of cryptocur-
rencies, where new currencies emerge every day, miners have
a wide variety of options to choose from. Thus, a solution to
detect covert cryptomining that focuses on a particular cryp-
tocurrency may not be adequate to tackle such an uncertain
situation. Besides, unethical mining has lured all members of
the modern society: government employees [3], corporate em-
ployees [4], students [5], teachers [6], researchers [7], nuclear
scientists [8], and undoubtedly, hackers [9, 10]. Furthermore,
extensive mining on an incompatible device may also damage
the hardware of the device [11]. To summarize, we can say
that covert cryptomining has financial consequences, such as
monetary losses, as well as societal influences such as ethical
and psychological impacts.

Contribution: The major contributions of this paper are
listed as follows:

1) We propose a novel approach that leverages the magnetic
side-channel to detect covert cryptomining. We target the
core of the mining process, i.e., the mining algorithms,
and thus, the scope of our approach is broader.

2) We implemented our approach and built a complete
system. We included twelve different cryptocurrencies
in our experiments, which indeed are the most mined
cryptocurrencies.

3) We designed and performed five different experiments to
throughly assess the quality of our proposed approach.

Organization: The remainder of this paper is organized as
follows. We discuss the essential concepts related to our work
in Section II. Section III provides a comparative summary
of the related works. We elucidate our system’s architecture
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in Section IV and its evaluation in Section V. Section VI
addresses the potential limitations of our proposed approach.
Finally, Section VII concludes the paper.

II. PRELIMINARIES

In this section, we briefly explain the fundamental concepts
related to our work. Section II-A introduces the magnetic
field, Section II-B describes the magnetic field sensor of
the smartphones, and Section II-C elucidates dynamic time
warping that serves as the similarity measure for our classifier.

A. Magnetic field

The magnetic field at any point in space is represented
by a vector quantity. It is specified by its magnitude as
well as direction and measured in Tesla (T). In practice,
magnetic fields are measured in the unit of millitesla (mT)
or microtesla (µT). Electric current produces a magnetic field.
The total magnetic field generated around an enclosed path is
directly proportional to the current which passes through that
path [12, 13]. In standard computers, the CPU is one of the
biggest consumers of the electricity. The power consumption
of modern energy efficient CPUs is dynamically affected by
the workload [14]. In the most fundamental case, overloading
the CPU with computations will draw more current, and hence,
will generate a stronger magnetic field. To demonstrate this
effect, we created a script that recursively engages all available
CPUs for 2 seconds and then sleeps for 2 seconds. Fig. 1
shows the CPU usage and the generated magnetic field while
executing this script.
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Fig. 1. The CPU usage (dashed line) and the generated magnetic field (plain
line) while executing a script that recursively uses all available CPUs for 2
seconds and then sleeps for 2 seconds

It is clear from Fig. 1 that the magnetic field around a
processor is directly affected by the workload of the processor.
Hence, this side-channel can be exploited to infer a proces-
sor’s activities.

B. Magnetic field sensor of the smartphones

Nowadays, smartphones are equipped with a variety of sen-
sors. One of these sensors is the magnetic field sensor, which
typically measures the strength (magnitude and direction) of
the magnetic field along the three physical (x, y, z) axes. Using
the three dimensional data from the magnetic sensor, we can
calculate the total magnetic field (Mtotal) as

Mtotal =

√
M2

x + M2
y + M2

z , (1)

where Mx , My , and Mz represent the strength of the magnetic
field along x, y, and z axis respectively.

C. Dynamic Time Warping
Dynamic Time Warping (DTW) is a widely adopted ap-

proach to find the optimal non-linear alignment between
two time series that may vary in time as well as speed.
DTW is also used as a distance measure to find similarity
between time series [15]. Let us consider two discrete time
series: Q = (q1,q2, . . . ,qi, . . . ,qn) of length n ∈ N and
C = (c1, c2, . . . , cj, . . . , cm) of length m ∈ N. DTW uses an
n × m matrix, whose (i, j)th element represents the distance
d(qi, cj) between qi and cj (i.e., d(qi, cj) = (qi − cj)2). Each
matrix element (i, j) corresponds to the alignment between the
points qi and cj . A warping path W = (w1,w2, . . . ,wk, . . . ,wK )

is a contiguous set of matrix elements that defines a mapping
between Q and C. The k th element of W is defined as
wk = (i, j)k for max(m,n) ≤ K < m + n − 1. The warping
path is typically subject to the following constraints:

1) Boundary condition: w1 = (1,1) and wK = (m,n).
2) Continuity: Given wk = (a, b), then wk−1 = (a′, b′), where

a − a′ ≤ 1 and b − b′ ≤ 1.
3) Monotonicity: Given wk = (a, b), then wk−1 = (a′, b′),

where a − a′ ≥ 0 and b − b′ ≥ 0.
There could be several warping paths that satisfy the condi-
tions reported above. However, our goal is to find the path that
minimizes the warping cost:

DTW(Q,C) = min ©«
√√√ K∑

k=1
wk

ª®¬ . (2)

The optimal path can be found by computing the cumulative
distance γ(i, j) using the following recursive function:

γ(i, j) = d(qi, cj) + min(γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)).
(3)

Fig. 2(a) shows the alignment between two discrete time
series TS-1 and TS-2. The arrows indicate the points that are
matched by the DTW algorithm. Fig. 2(b) depicts the heat-
matrix for these two time series. The color of a cell (i, j)
depicts the minimum distances to reach the cell (i, j) from
the cell (0, 0). The optimal warping path has been highlighted
using a yellow line that starts from the cell (0, 0), which also
satisfies boundary, continuity, and monotonicity constraints
mentioned above.

(a) Alignment between TS-1
and TS-2

(b) Illustration of the optimal warp-
ing path

Fig. 2. A representative example of DTW algorithm applied to two discrete
time series: TS-1 and TS-2
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Standard DTW is optimal, but it is computationally ex-
pensive, both in space and time complexity. Standard DTW
has a complexity of O(nm) where n and m are the lengths
of the first and second time series respectively. The perfor-
mance of DTW can be improved by restricting the amount
of warping allowed, which typically limits the number of
cells computed in the DTW distance matrix. There are sev-
eral proposals that claim to improve DTW such as Pruned-
DTW [16], SparseDTW [17], FastDTW [18], and Multi-
scaleDTW [19, 20]. These approaches [16–20] propose ways
to speed-up exact DTW computation for two time series.
Next, LB Keogh lower bound [21] is a technique that al-
lows efficient indexing and comparison of many time se-
ries via lower-bound approximation (less than exact DTW
value). Moreover, Wang et al. [22] found that except for
LB Keogh lower bound [21], all other techniques are inef-
ficient. Hence, in this work, we use LB Keogh lower bound
to speed up DTW, which is computed as shown in Eq. (4):

LB Keogh(Q,C) =

√√√√√ n∑
i=1


(ci −Ui)

2, if ci > Ui;
(ci − Li)

2, if ci < Li;
0, otherwise.

(4)

Here, Li and Ui are lower and upper bounds for time se-
ries Q, which are defined as Li = min(qi−r : qi+r ) and
Ui = max(qi−r : qi+r ) for a reach r . LB Keogh lower bound
method has linear complexity, which makes it very useful for
searching over large sets of time series.

III. RELATED WORKS

The side-channel information leakage has been thoroughly
studied over the previous years. Several research works fo-
cused on various side-channels to leak information from
different type of systems. We will primarily discuss previous
studies more relevant to our work.

Quisquater et al. [23] show that the electromagnetic attack
on processors can reveal as much information as power
consumption-based side-channel analysis. Mateos et al. [24]
use specialized magnetic sensors to recover a secret key.
Song et al. [25] investigate acoustic and magnetic side-channel
attacks on 3D printers using smartphone’s built-in sensors.
Biedermann et al. [26] use the smartphone’s magnetic sensors
to fingerprint hard-drives. The authors are able to deduce
ongoing system activities based on the emitted magnetic field
due to movements of the hard drive’s magnetic head. However,
their methodology is inapplicable to the modern computers
equipped with Solid State Drive (SSD) storage. Similarly,
Matyunin et al. [27] establish a covert channel using the
magnetic field between a laptop that is infected with a special
program and a smartphone equipped with a magnetic sensor.
The authors claim that their approach can decode the emanated
signal up to a distance of roughly 12 cm from the laptop.
ODINI [28] and MAGNETO [29] employ malware to control
workload on the CPU, which, in turn, regulates the magnetic
fields emitting from the target device. ODINI uses a high-
precision magnetic sensor to receive data up to 150 cm while
MAGNETO can receive data up to a maximum distance of
12 cm using a regular smartphone.

The literature on detecting the mining of cryptocurrencies is
rather limited. Bonneau et al. [30] present a systematic study
of various cryptocurrencies and discuss open research chal-
lenges. Huang et al. [31] in their analysis of Bitcoin mining
malware have shown that modern botnets generate additional
revenue via illicit mining. Eskandari et al. [32] present a
security analysis of in-browser mining of cryptocurrencies.
Recent works [33–37] focus specifically on browser-based
mining. However, only a small subset of cryptocurrencies
supports in-browser mining. MineGuard [38] focuses on min-
ing operations in the cloud infrastructure. The authors utilize
privileged hardware performance counters to fingerprint and
detect covert mining.

Our work is different from the state-of-the-art on various
dimensions: (1) Our proposed approach is a generalized ap-
proach that applies to all forms of cryptomining on computers;
(2) Our approach does not require any specialized equipment,
malware/software installation, user-/root-privileges, or even
login-access to the monitored system. The only requirements
are the physical proximity of the investigator and a magnetic
sensor; (3) Our methodology does not impart any performance
overhead on the monitored system; and (4) Our study includes
all the cryptocurrencies supported by the top-10 mining pools,
which covers the largest share of the market of cryptomining.

IV. SYSTEM ARCHITECTURE

We explain the foundation of our work in Section IV-A,
our data collection strategy in Section IV-B, our decision for
selecting cryptocurrencies in Section IV-C, and the design of
our classifier in Section IV-D.

A. Core concept

The task of mining is to execute a core Proof-of-Work
(PoW1) algorithm repeatedly, which means that a robust
signature can be constructed for a particular algorithm. In-
terestingly, there are a limited number of PoW algorithms.
Therefore, we focus on the mining algorithms. The major
benefit of our strategy is that the signature constructed for
an algorithm would be able to detect even metamorphic and
polymorphic implementations of that algorithm used by other
cryptocurrencies. Notably, such signature-based detection of
cryptomining can be partially deceived by restricted mining.
But, it would directly affect the hashing rate and consequently
the profits; making the task of mining less appealing.

Previous works [26–29] have shown the effectiveness of
the magnetic side-channel to exfiltrate information from com-
puters. We designed our system for detecting and classifying
covert cryptomining using the magnetic side-channel for the
following reasons: (1) The examiner may not have login-
access2 or root-privileges3 on the device; (2) As discussed
in Section II-A, magnetic field emission is a fundamental
phenomenon associated with electronic circuits and it can

1We use “PoW” as the representative of various consensus algorithms.
2E.g., an administrator in BYOD culture, who suspects an employee’s

machine.
3E.g., an employee, who suspects an infection in the company-provided

machine.
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even penetrate air-gaps and a faraday-cage; and (3) Since the
miners have to adhere to and repeatedly execute the core PoW
algorithm used by a cryptocurrency, the pattern of the magnetic
field emitted while mining a cryptocurrency is distinct as well
as consistent. For the same reason, even a smaller signature
database is sufficient for reasonable classification results.

B. Dataset collection

To better elucidate our work and to maintain the flow
of reading, we first explain the data collection stage. We
used two different systems in our experiments. These systems
have the following configuration: (1) S1, a laptop with an
Intel Core i5-7200U @ 2.50 GHz (1 socket x 2 cores x
2 threads = 4 logical compute resources) processor, 8 GB
memory, 256 GB SSD storage, and Intel HD Graphics 620
mounted on Dell Inc. 0M60Y2 motherboard with Ubuntu
16.04 as the operating system; and (2) S2, a laptop with
an Intel Core i7-8550U @ 1.80 GHz (1 socket x 2 cores x
4 threads = 8 logical compute resources) processor, 16 GB
memory, 512 GB SSD storage, and Intel UHD Graphics 620
mounted on Dell Inc. 02PG84 motherboard with Ubuntu 18.04
as the operating system. To show the effectiveness of the
proposed method, we used an ordinary smartphone (Samsung
Galaxy S5 running Android 6.0.1), hereinafter referred to as
probe device, to record the generated magnetic field. Fig. 3
depicts a representative demonstration of data collection on
S1 using the probe device. Section VI-B presents a detailed
discussion on probe’s orientation and position.

Fig. 3. A representative demonstration of data collection on S1 using the
probe device

We mined and profiled each cryptocurrency (discussed in
Section IV-C) individually and collected a total of thirty sam-
ples per cryptocurrency per system, where each sample com-
prises measurements taken over a time interval of thirty sec-
onds. The sampling rate of the probe’s magnetic sensor
was 10Hz. To obtain clean signatures of the core PoW algo-
rithms, we profiled the miners in their stable stage, i.e., omit-
ting the bootstrapping phase. As representatives of non-mining
tasks (negative-class), we chose: Internet browsing; PDF doc-
ument scrolling; Skype test call; 3D benchmarking; solving
N-queens problem (N=18); 4K video streaming; H.264 video
encoding; network performance test using iperf tool; machine
learning with scikit-learn; deep learning with TensorFlow;
stress-ng [39] stress test with CPU-only workers; and stress-ng
stress test with CPU, memory, I/O, and disk workers together.
It is worth mentioning that these user-tasks represent low
to high compute-intensive tasks and all belong to the same
category (i.e., non-mining) for classification purposes. Similar
to the mining tasks, we profiled each non-mining task for the
same time interval as well as number of samples.

Before any experiment was performed, we estimated the
background magnetic field to calibrate subsequent measure-
ments (triplets). We took 100 measurements (10sec @ 10Hz)
along the three (x, y, z) axes and calculated the mean (M̄x ,
M̄y , M̄z) of the background noise. We calibrated each mea-
surement, collected during the experiments, by eliminating the
mean background noise from it. Finally, we computed Mtotal

for each calibrated measurement using Eq. (1).

C. Cryptocurrencies and miners

In the context of cryptocurrency mining, miners pool their
resources so they can generate blocks more quickly, and
therefore earn a portion of the block reward on a consistent
basis. Mining pools are characterized by their hashing power.
TABLE I lists the cryptocurrencies supported by the top-10
mining pools [40], which collectively comprise the largest
share (84% during Q3 2018) of the cryptomining market.
See TABLE A.1 (in Appendix A) for acronyms and their
corresponding cryptocurrency.

We included all the cryptocurrencies supported by these
mining pools in our experiments. Additionally, we included
QRK whose mining algorithm - unlike other currencies -
consists of a combination of different hashing algorithms. To
mine these currencies, we used open-source miner programs
that are readily available online. Each miner was configured

TABLE I
CRYPTOCURRENCIES SUPPORTED BY THE TOP-10 MINING POOLS

N. Mining pool Cryptocurrency
BCD BCH BTC BTM DASH DCR ETC ETH LTC SBTC SC UBTC XMC XMR XZC ZEC

1 BTC.com 7 3 3 7 7 7 7 7 7 3 7 3 7 7 7 7
2 AntPool 7 3 3 3 3 7 3 3 3 7 3 7 3 7 7 3
3 ViaBTC 7 3 3 7 3 7 3 3 3 7 7 7 7 7 7 3
4 SlushPool 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 3
5 F2Pool 7 7 3 7 3 3 3 3 3 7 3 7 3 3 3 3
6 BTC.top 7 3 3 7 3 7 7 7 3 7 7 7 7 7 7 7
7 Bitclub.network 7 7 3 7 3 7 3 3 7 7 7 7 7 3 7 3
8 BTCC 3 3 3 3 7 7 7 7 3 3 7 7 7 7 7 7
9 BitFury 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7

10 BW.com 7 7 3 7 7 7 3 3 3 7 3 3 7 7 7 7
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to mine with public mining pools and to use all available
CPUs on the machine, i.e., 4 logical CPUs. TABLE II lists
the mining algorithm of different cryptocurrencies as well as
the CPU miners that we used to mine them.

TABLE II
MINING ALGORITHM AND CPU MINER FOR DIFFERENT

CRYPTOCURRENCIES

Cryptocurrency Mining algorithm CPU miner
BCD X13 cpuminer-opt 3.8.8.1

BCH, BTC,
SBTC, UBTC SHA-256 cpuminer-multi 1.3.4

BTM Tensority bytom-wallet-desktop 1.0.2
DASH X11 cpuminer-multi 1.3.4
DCR Blake256-r14 cpuminer-multi 1.3.4

ETC, ETH Ethash (Modified
Dagger-Hashimoto) geth 1.7.3

LTC scrypt cpuminer-multi 1.3.4

QRK
BLAKE + Grφstl + Blue
Midnight Wish + JH +

Keccak (SHA-3) + Skein
cpuminer-multi 1.3.4

SC BLAKE2b gominer 0.6
XMC, XMR CryptoNight cpuminer-multi 1.3.4

XZC Lyra2z cpuminer-opt 3.8.8.1
ZEC Equihash Nicehash nheqminer 0.3a

As explained in Section IV-A, different cryptocurrencies
that employ the same mining algorithm exhibit the same
signature. Therefore, it is sufficient to consider one currency
for each mining algorithm listed in TABLE II. We excluded
BCH, SBTC, UBTC, ETC, and XMC. In our study, we
used only CPU-based miners as the proof-of-concept
implementation. Nevertheless, our approach is also valid
to distinguish GPU-based miners because a GPU operates
differently than a CPU. For the same reason, GPU-based
mining generates a distinct magnetic field in terms of
magnitude as well as form. As a representative example,
Fig. 4 shows the generated magnetic field while mining XMR
on CPU and on GPU4.
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Fig. 4. Generated magnetic field while mining XMR

4Using ccminer v2.3 on 4 GB NVIDIA GeForce GTX 960M.

D. Classifier design
The data for the generated magnetic field can be represented

as a time series. Thus, our problem converts to time series
classification. In our scenario, we can identify the following
two main objectives of the classification stage:
• Classify whether a given instance represents the mining

activity or not;
• If so, then predict the specific currency (algorithm).

We designed our classifier to suffice these objectives. Now,
we discuss our data preprocessing, machine learning model
selection, training, and prediction phase.

1) Data preprocessing: The results of time series classi-
fication are affected by the quality of input data. All the
time series data in our dataset are of equal length. Before
starting the training, we employ a scaling function to normalize
the input data. In particular, following the suggestion from
the work [41], we use the Z-normalization technique. See
Appendix B for further details on the scaling technique. Next,
we smooth [42] the input data to remove noise.

2) Machine learning: Fig. 5 depicts the generated magnetic
field while mining BTC and XMR. The time series graphs
shown in Fig. 5 are different from each other because each
of these cryptocurrencies uses a distinct PoW algorithm that
performs a discrete task and has a different iteration cycle.
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Fig. 5. A representative example of the generated magnetic field while mining
BTC and XMR

We use the K-Nearest Neighbors (KNN) algorithm for the
classification of our time series consisting of the values for
Mtotal at each measurement, where DTW distance serves as
the similarity measure. In particular, we use the KNN classifier
with K = 1 because previous studies on the classification of
time series data demonstrated that DTW-based 1NN classifier -
which selects the first nearest neighbors - is “the best” [43, 44],
“Nearest Neighbor DTW is very hard to beat” [45], and “1NN
with DTW is exceptionally hard to beat” [46]. Nevertheless,
in our experiments, we also performed stratified 4-fold cross-
validation on training data - which we obtain from 80-20%
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stratified partitioning of our dataset into training-test split -
and we observed least error rate for K=1 among all the single
digit odd values of K.

3) Training and prediction: Our classification model is
instance-based. For every instance in the test-set, a search is
performed through all the instances in the training-set to find
the most similar time series. Given the quadratic complexity
of DTW, we use LB Keogh lower bound (see Section II-C)
to speed up the classification stage. Given a new instance
to classify, the prediction is made for both the objectives
discussed at the beginning of this section.

V. EVALUATION

Here, we describe the evaluation procedure used to thor-
oughly assess the quality of our proposed approach. For
the objectives of the classification stage, mentioned in Sec-
tion IV-D, we performed the following five experiments:
(1) binary classification; (2) currency classification; (3) full-
stack classification; (4) unseen-miner-programs classification;
and (5) cross-platform classification. In order to increase
the statistical significance of the results, we repeated each
experiment five times with stratified 80-20% training-test
partitioning. It is worth to state that even though the dataset
has been collected in a controlled setup, our experiments fairly
simulate the real-world scenario, where samples are gathered
in real-time. TABLE III describes the sample distribution in
our dataset for each system, i.e., S1 and S2. Here, sub-classes
of the mining task refer to the cryptocurrencies (discussed
in Section IV-C) while sub-classes of the non-mining task
refer to the actual user-tasks that belong to the negative class
(mentioned in Section IV-B). It is important to mention that
we created a single training-set where we kept the instances
from both S1 and S2 together.

TABLE III
DATASET: NAME OF THE TASK, SUB-CLASSES PER TASK, SAMPLES PER

SUB-CLASS, AND TOTAL SAMPLES PER TASK FOR EACH SYSTEM

Task Sub-classes
per task

Samples per
sub-class

Total samples
per task

Mining 12 30 360
Non-mining 12 30 360

We evaluated our classifier using standard classification
metrics: Accuracy, Precision, Recall, and F1 score. For the
statistical certitude of our results, we report the mean and
the margin of error for the results with 95% confidence
interval from five runs of each experiment for each of the
evaluation metric. See Appendix B for details on the evaluation
metrics and the related statistical terms. We use the notation
mean ± margin o f error to report our results.

A. Binary classification

In this setting, we consider our classification problem as
a binary classification task for Mining (positive) class and
non-mining (negative) class. All the instances of various
cryptocurrencies are treated as the positive-class while all the
instances of non-mining user-tasks fall in the negative-class.

This assessment aims to evaluate our classifier’s ability to
detect the presence of cryptomining activities. Fig. 6 presents
the results of the binary classification. Fig. 6(a) and Fig. 6(b)
correspond to S1 and S2, respectively.

(a) S1 (b) S2

Fig. 6. Results of the binary classification (whiskers represent the margin
of error)

On S1, we achieved an average accuracy of 85.59%±1.33%,
precision of 89.59%±1.03%, recall of 84.61%±1.68%, and
F1 score of 87.02%±1.26% while on S2, we attained an aver-
age accuracy of 86.61%±0.77%, precision of 86.78%±1.29%,
recall of 87.22%±0.94%, and F1 score of 86.99%±0.84%.

B. Currency classification

We designed this experiment to comprehend the level of
difficulty in distinguishing various cryptocurrencies. Hence,
the input data for this experiment comprised of instances
belonging only to cryptocurrencies. Fig. 7 showcases the
confusion matrix for classification among various cryptocur-
rencies. We drew the confusion matrices using the aggregate
results from all the five runs. Fig. 7(a) and Fig. 7(b) correspond
to S1 and S2, respectively.

(a) S1 (b) S2

Fig. 7. Confusion matrix for currency classification

On both S1 and S2, our classifier achieved an overall-
average performance of over 93% for each of the evaluation
metric. Furthermore, the results from this assessment also help
us to better understand the outcomes of full-stack classifica-
tion, which is discussed next.

C. Full-stack classification

This assessment aims to evaluate our classifier’s ability
to fulfill both our classification objectives, i.e., first, identify
whether the given instance represents a mining activity, and if
so, then predict the specific currency. It is worth to mention
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that an error in the primary stage of the full-stack classification
influences the subsequent stage. Furthermore, given that our
classifier makes a correct decision in the primary stage, the dif-
ficulty level of the subsequent stage (i.e., classification among
various cryptocurrencies, discussed in currency classification)
affects the final results. Fig. 8 depicts the results of the full-
stack classification. Fig. 8(a) and Fig. 8(b) correspond to S1
and S2, respectively.

(a) S1 (b) S2

Fig. 8. Results of the full-stack classification (whiskers represent the margin
of error)

On S1, we attained an average accuracy of 76.95%±1.17%,
precision of 83.85%±0.69%, recall of 73.89%±1.83%, and
F1 score of 78.54%±1.27% while on S2, we achieved an aver-
age accuracy of 77.08%±1.31%, precision of 85.88%±2.05%,
recall of 71.78%±1.21%, and F1 score of 78.17%±1.17%.
Given the lenient requirements (mentioned in Section III) of
our methodology, we believe that the results of the full-stack
classification are justifiable. Nevertheless, our primary aim is
to identify the presence of the covert cryptomining, for which,
our binary classification has manifested promising results.

D. Unseen-miner-programs classification

Since there can be more than one miner programs for
a cryptocurrency and training a classifier on every miner
program might not be possible. Therefore, we designed this
experiment to evaluate the proficiency of our approach in such
circumstances. The goal of this experiment was to perform the
binary classification of all mining and non-mining samples,
as mentioned in Section V-A. However, we selected two
additional miner programs for BTC, namely, BFGMiner 5.5
and cgminer 4.10. During the training, the classifier was
exposed to samples from one of the three miner-programs
for BTC. In contrast, during the testing phase, samples from
one of the remaining two miner-programs for BTC were used.
TABLE IV reports our results of classifying samples from the
miner programs that were not seen in training.

The notation MN means that for BTC, the classifier
was trained with samples from M while samples from N
were used for testing. Here, α = cpuminer-multi 1.3.4,
β = BFGMiner 5.5, γ = cgminer 4.10. It is important
to mention that even though we performed the classification
with all the mining and non-mining sub-classes, TABLE IV
presents the results only for BTC mining to preserve the goal
of this experiment.

As mentioned in Section IV-A, the miners have to adhere
to the core PoW algorithm used by a cryptocurrency. Our
results presented in TABLE IV support our notion that the

TABLE IV
RESULTS OF THE unseen-miner-programs CLASSIFICATION

System Set Accuracy Precision Recall F1 score

S1

αβ 0.966 ± 0.015 0.969 ± 0.015 0.965 ± 0.016 0.967 ± 0.016
αγ 0.952 ± 0.024 0.957 ± 0.022 0.951 ± 0.023 0.953 ± 0.024
βα 0.966 ± 0.016 0.968 ± 0.016 0.964 ± 0.016 0.966 ± 0.016
βγ 0.969 ± 0.016 0.971 ± 0.015 0.967 ± 0.016 0.969 ± 0.016
γα 0.955 ± 0.023 0.958 ± 0.020 0.954 ± 0.022 0.954 ± 0.022
γβ 0.966 ± 0.021 0.970 ± 0.019 0.964 ± 0.021 0.966 ± 0.021

S2

αβ 0.957 ± 0.010 0.961 ± 0.011 0.955 ± 0.010 0.957 ± 0.011
αγ 0.943 ± 0.018 0.949 ± 0.017 0.941 ± 0.016 0.943 ± 0.018
βα 0.951 ± 0.014 0.954 ± 0.014 0.950 ± 0.012 0.952 ± 0.013
βγ 0.954 ± 0.015 0.957 ± 0.015 0.953 ± 0.014 0.955 ± 0.015
γα 0.941 ± 0.016 0.945 ± 0.015 0.941 ± 0.015 0.941 ± 0.015
γβ 0.953 ± 0.019 0.957 ± 0.017 0.951 ± 0.018 0.953 ± 0.019

pattern of the magnetic field emitted while mining a given
cryptocurrency is consistent across different miner programs.

E. Cross-platform classification

We designed this experiment considering one of our key
motivations, i.e., to build a system that can detect covert cryp-
tomining in situations where the hardware is heterogeneous,
e.g., BYOD workplace. Here, we used two additional laptops,
S1’ and S2’, to collect a new test set. S1’ and S2’ has a
distinct hardware configuration but identical processor as S1
and S2, respectively. For each sub-class of both mining and
non-mining tasks, we collected 15 separate samples on both
S1’ and S2’. The target of this experiment was to perform the
binary classification of mining and non-mining samples, as
mentioned in Section V-A. Here, we used our dataset collected
previously on S1 and S2 as the training set, but for testing,
we used samples obtained from S1’ and S2’. Fig. 9 depicts
the results of the cross-platform classification. Fig. 9(a) and
Fig. 9(b) correspond to S1’ and S2’, respectively.

(a) S1’ (b) S2’

Fig. 9. Results of the cross-platform classification

Essentially, our proposed approach is to profile the magnetic
field emission of a processor for the set of available mining
algorithms. As shown in Fig. 9, the performance of the binary
classifier on S1’ and S2’ is nearly at par (with a maximum
performance degradation of 5.5%, which is in the precision)
with its average performance on S1 and S2 (see Fig. 6), where
the training set was originally collected.

Finally, we used the profile of one processor to classify
samples from another processor. In these separate experiments,
we used training-set from one device (S1 | S2) and test-
set from another device (S2 or S2’ | S1 or S1’). We found
that the profile of one processor may not be reliably used
to classify instances from another processor. In fact, these
results align with our fundamental idea to profile the magnetic
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field emission of individual processors for the set of available
mining algorithms.

VI. DISCUSSION

In this section, we discuss the important aspects of our
proposed approach and address its potential limitations.

A. Zero-day attack

In our context, a zero-day attack would be to mine a
cryptocurrency that uses a brand new or custom PoW algo-
rithm. However, for such a currency to have a value/worth
in the real-world, its PoW algorithm must be mathematically
robust as well as accepted by the crypto-community and its
core network must be supported by moderate-to-large scale
miners/pools. Hence, by the time a zero-day cryptocurrency
becomes ready for mining, its algorithm would be public
knowledge, providing us sufficient time to train our system
for this new currency’s signature.

On another side, conscious-miners as well as the actors
behind unconscious-mining tend to mine more profitable
currencies - whose mining algorithms are certainly public
knowledge - to maximize their profit and avoid hashing the
less valuable ones. In our experiments, we considered all
the mining algorithms supported by the top-10 mining pools,
which indeed are the most mined cryptocurrencies.

B. Probe’s orientation and position

The orientation as well as the position of the probe with
respect to the processor are the critical aspects of our work.
Our approach relies on the total magnetic field (Mtotal), which
is computed using Eq. (1). The magnetic sensor’s reading -
which can be positive as well as negative depending on the
direction - for each component of the magnetic field is squared
first, which eliminates the influence of the probe’s orientation.

Since the magnetic fields decay over distance, the distance
(position) of the probe from the processor can be seen as a
limitation of our approach. In our scenario, the investigator has
at least physical-access - if not login-access - to the system.
Hence, one can place the probe near the processor simply by
understanding the system’s physical architecture. Any light-
offset in positioning the probe would still perceive the same
waveform of the generated magnetic field though with a differ-
ent amplitude, which is neutralized during data normalization
phase. Nevertheless, using high-precision magnetic sensors
may help to manage this limitation to some extent.

C. Interference due to other processes

The miner programs tend to exploit all available compute
resources and deprive other processes of these resources.
However, minute interference due to the occasional scheduling
of other processes can be handled by the very nature of our
classification methodology, DTW in particular. Such interfer-
ence would be minimum in the case of the conscious-miners,
who would allocate all the resources to the mining process
to maximize the profit. Whereas unconscious mining would

interfere with its victim’s tasks; this is the situation5 where
the victims can halt their tasks and use our system to detect
covert cryptomining.

D. Scalability

The fundamental idea of our proposed approach is to
profile the magnetic field emission of a processor for the
set of available mining algorithms. Given the finite number
of CPUs/GPUs, obtaining signatures is merely a data collec-
tion task. At the beginning, it might appear a tedious task.
But, once completed, keeping it up-to-date is relatively easy
because only a limited number of processors are released
from time to time.

E. Restricted mining

A mining strategy to evade detection from our proposed
methodology can be restricted mining that aims to change
the pattern of the emitted magnetic field. Here, the miner
can either throttle the mining down or perform arbitrary tasks
during mining. But, both maneuvers would directly affect the
hashing rate and consequently the profits; making the task of
mining less appealing. Nevertheless, like any signature-based
detection technique, it may be seen as a limitation of our work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel methodology to detect
and classify covert cryptomining. Our proposed approach
focuses on the core of cryptomining, i.e., mining algorithms.
Since it uses the magnetic side-channel, it works even if
the examiner does not have login-access or root-privileges
on the suspect machine. In our study, we considered a wide
variety of cryptocurrencies and empirically demonstrated the
effectiveness of our system.

In the future, we will further investigate the variations in
the magnetic profiles of more processors. We will explore the
possibility of creating a common profile across different
processors for a given PoW algorithm. We will also evaluate
the performance of our approach under different mining rate
as well as in scenarios with varying magnetic field profiles,
e.g., server rooms. Finally, we hope to release a smartphone
app for run-time identification of the covert cryptomining.
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APPENDIX A
ACRONYMS

TABLE A.1 lists the acronyms used for various cryptocur-
rencies.

TABLE A.1
ACRONYMS AND THEIR CORRESPONDING CRYPTOCURRENCY

Acronym Cryptocurrency
BCD Bitcoin Diamond
BCH Bitcoin Cash
BTC Bitcoin
BTM Bytom

DASH Dash
DCR Decred
ETC Ethereum Classic
ETH Ethereum
LTC Litecoin
QRK Quark
SBTC SuperBitcoin

SC Siacoin
UBTC UnitedBitcoin
XMC Monero-Classic
XMR Monero
XZC Zcoin
ZEC Zcash

APPENDIX B
STANDARD DEFINITIONS

Here, we present the definitions of some concepts that we
used in our work.

Z-normalization transforms each feature in such a way
that the mean becomes zero and standard
deviation becomes one. Specifically, given
a feature x and one of its value xi , the
following formula is applied:

Z(xi) =
xi − µ(x)
σ(x)

,

where µ(x) and σ(x) are the mean and
standard deviation of the variable x.

Standard error of a variable y is expressed as:

SE (y) =
σ(y)
√

n
,

where n and σ(y) are the number of ob-
servations and standard deviation of the
variable y.

Margin of error is the range of values above and below
the sample mean for a given confidence
interval. It is calculated as:

z ∗ SE (y),

where z is the coefficient for the selected
confidence level. E.g., z is 1.96 for 95%
confidence interval.

Accuracy measures how often the classifier makes
the right prediction defined as the ratio
between the number of hit and the number
of predictions.

Precision quantifies the ability of a classifier to not
label a negative example as positive. It is
computed as the ratio of the number of true
positives and the total number of instances
labeled as positives.

Recall defines the probability that a positive pre-
diction made by the classifier is actually
positive. It is computed as the ratio of
the number of true positives and the total
number of positives in the set.

F1 score is a single metric that combines both pre-
cision and recall via their harmonic mean:

F1 score = 2 ×
precision × recall
precision + recall
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