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Abstract—Internet of Multimedia Things (IoMT) are receiving
significant attention due to a wide variety of applications, e.g.,
wildlife habitat monitoring, but they are often highly resource
constrained. Compared to Internet of Things, preserving battery
power of nodes, and maximizing the lifespan of IoMT are more
critical and challenging as sensed data are mostly image/video
instead of simple scalar. Recent studies have shown that clustering
is an efficient solution to reduce energy consumption. In clusters,
the role of each node changes to reduce energy consumption,
thereby, prolonging lifespan. In this paper, we address the
lifespan maximization problem in IoMT by designing a clustering
protocol where clusters are formed dynamically. Specifically, we
analyze and solve an optimization problem aiming to maximize
the lifespan by reducing the energy consumption among cluster
heads. Based on the analysis, we propose a novel DIStributed on-
demand Clustering (DISC) protocol. Our cluster head election
procedure is not periodic, but adaptive, based on the dynamism of
the occurrence of events. This on-demand execution of DISC aims
to significantly reduce computation and message overheads. We
validate the performance of DISC through extensive experiments.
Experimental results show that DISC is 25% more energy
balanced and achieves 32% more lifespan as compared to two
state-of-the-art solutions.

Index Terms—Energy balance, Linear programming, Network
lifespan, Clustering, Internet of Multimedia Things.

I. INTRODUCTION

Due to the impetuous advancement of technologies in recent

years, the integration of wireless cameras with Internet of

Things (IoT) [1] has started to receive attention in vari-

ous cyber-physical systems including environment monitor-

ing, public safety, and wildlife tracking [2]. Such networks,

referred to as Internet of Multimedia Things (IoMT) [2],

deploy certain number of cameras in addition to other types

of scalar sensors (e.g., temperature, light), and can gather

and process multimedia data. One example is smart wildlife

tracking system, where several video analyses, and computer

vision algorithms, e.g., tracking, and behaviour analysis, are

integrated into smart sensor nodes for large scale wildlife

tracking. In many cases, multimedia nodes (henceforth, re-

ferred to as IoMT nodes or nodes) are battery powered with

a limited capacity, and hardly last for few months or at the

most for a year. Therefore, energy is the scarcest resource in

IoMT due to the difficulty of replacing or efficiently recharging

batteries in remote or hostile environments. In IoMT, unlike

IoT, generally sensed data are mostly image/video instead of

simple scalar, which require much more energy for transmit-

ting, and gathering. Also, processing image/video data requires

more complex and energy consuming techniques. Hence, in

IoT, where energy consumption is dominated only by data

transmission and reception, IoMT consumes extra energy on

image/video data capturing, processing, and storage opera-

tions. These additional energy consumption has a significant

effect on the battery power, and leads to premature decrease

of network lifespan in IoMT.

Different studies [3], [4] have shown that clustering is an

efficient solution to reduce energy consumption among nodes.

Particularly, schemes based on clustering technique aim to

organize the network topology in a way that the role of

individual nodes changes to minimize energy consumption.

The focus of this paper is thus on works specifically targeted to

clustering techniques. In clustering paradigm, each cluster has

a coordinator, referred to as Cluster Head (CH) and a number

of Member Nodes (MNs). The MNs capture image/video

data from the environment and transmit their data to the

respective CHs. In general, data gathered by the CHs are

often redundant and highly correlated in nature. Hence, to

reduce the redundant data, the CHs aggregate the data, and

send them to the sink, either directly or via a multi-hop path.

Apart from data aggregation, the network may be reclustered

periodically to select energy abundant nodes to function as

CHs, thus, distributing the load uniformly on all the nodes.

Since significant numbers of nodes are deployed in IoMT, so

green networking plays a crucial role in IoMT to reduce energy

consumption, lessen pollution and emissions. Besides energy

saving capability, clustering reduces channel contention and

packet collisions, resulting in better network throughput [4].

Based on the clustering properties, we classified the existing

techniques into two categories, namely, uniform clustering and

non-uniform clustering. In uniform clustering [5], the clusters

with relatively equal sizes are formed, to keep the number of

clusters as small as possible, evenly distribute them across the

network, and typically, provide minimum overlapping among

them. The major problem in uniform clustering is that the

traffic load is not evenly distributed among all the nodes.

Particularly, the nodes located nearer to the sink bear more

traffic load than those farther away from the sink, eventually

resulting in the energy hole problem [4]. On the contrary, in

non-uniform clustering [6], based on the distance between the

nodes and the sink, variable sizes of clusters are formed across

the network to evenly distribute the traffic load among the

nodes. Since the traffic load among the nodes are distributed



evenly, non-uniform clustering is more promising with respect

to energy efficiency than uniform clustering.

In this work, we consider non-uniform clustering. Further,

to reduce energy consumption of the data gathering process,

we consider event driven based data gathering [7], and cluster

formation is triggered by occurrence of event, i.e., on-demand

based. In the on-demand based clustering, a node wakes up

only when an event is detected or another node wants to

communicate with it. While the application of the on-demand

based clustering strategy is not limited to a specific example,

to help the reader understand our solution, we assume the

following scenario. Let us assume a IoMT deployed for

monitoring a parking lot, where IoMT nodes are deployed in

a large building, each IoMT node is equipped with a camera

for taking images once an intruder is detected. In presence

of obstacles, a IoMT node may capture a limited view of

the intruder. IoMT nodes thus form clusters according to on-

demand basis. Thereafter, the CH collects the captured images

from IoMT nodes (or, MNs) to build the complete view of the

region that is being monitored along with the intruder.

Many clustering techniques [5], [6], [8], [9] have been

designed to balance energy consumption. Most of the proposed

strategies consider time driven based clustering and ideal

channel model. Furthermore, in existing clustering approaches,

CHs are either pre-assigned [5], [8] or selected based on

residual energy [9], [10]. The major problems of pre-assigned

clustering approaches are that they are neither dynamic nor

energy efficient, and have limited applications. In contrast, our

proposed clustering strategy is dynamic, and CHs are selected

based on the average energy usage and residual energy level.

To the best of our knowledge, there exists no literature that

considers optimization of cluster size by including realistic

channel model to minimize and balance energy consumption

among CHs, while devising clustering protocol for IoMT. The

major contributions of this paper are as follows:

• First, we analyze the role of cluster radius in energy

balancing and network lifespan maximization by consid-

ering the impacts of both inter-cluster and intra-cluster

data traffic. Our analytical results show that choosing of

appropriate cluster radius (i.e., decreasing trend towards

the sink) has significant role in maximizing network

lifespan.

• Based on the analysis, we derive the principle of optimal

clustering structure and that, in turn, is used to compute

the optimal cluster radius.

• Different from the existing protocols, we next propose

a novel DIStributed on-demand Clustering (DISC) pro-

tocol, where CHs are selected dynamically based on

the average energy usage and residual energy level. The

invocation of DISC is based on the detection of an event

of interest. This reduces the unnecessary system updates

and hence computation and message overheads.

• Through extensive simulation, we show that DISC

achieves higher energy efficiency and network lifespan

than existing approaches [6], [9] under both indoor and

outdoor environments. Moreover, non-uniform clustering

in IoMT offers more efficiency in energy savings, and

prolonged lifespan compared to traditional IoT network.

The rest of this paper is organized as follows. Section II

discusses the related works. The system model considered

for the present work is described in Section III. Section IV

theoretically analyzes the network lifespan maximization prob-

lem and obtains the optimal clustering strategy. The proposed

clustering strategy is described in Section V. Section VI

presents experimental results under indoor and outdoor en-

vironmental conditions. Finally, concluding remarks are given

in Section VII.

II. RELATED WORK

In the last decade, different clustering techniques were pro-

posed to use energy efficiently in wireless resource-constrained

nodes. Most of the proposed clustering techniques belong

to Wireless Sensor Network (WSN) paradigm. Similar to

WSN, nodes in IoT/IoMT play an important role in collecting,

sending, and receiving a significant amount of data. Here,

we briefly summarize the existing clustering strategies most

relevant in our context.

Non-uniform Clustering. In one of the earlier work’s, Shu

et al. [8] explored the network lifespan maximization problem

by balancing the energy consumption among CHs. To obtain

balanced energy consumption, two mechanisms are proposed,

viz. routing-aware optimal cluster planning and the clustering-

aware optimal random relay. The first method uses a clustering

approach that is developed under the perspective of shortest

path inter-cluster routing. The second method is a routing

strategy for load-balanced clustered topologies. Recently, Feng

et al. [6] proposed a clustering algorithm to improve the

network lifespan of IoT. In the proposed clustering algorithm,

initially, the authors used a K-means clustering algorithm

to partition the network area into clusters. Particularly, the

authors used an objective function to form the clusters. After

cluster formation, to avoid uneven energy consumption, the

authors proposed a weighted evaluation function to adjust

the cluster size. More recently, Halder et al. [4] proposed a

clustering structure, where CHs are static and selected during

deployment process. In this proposed clustering structure,

cluster size is determined by solving an optimization problem,

where input parameters are node density, packet size etc. Next,

the authors proposed a deterministic deployment algorithm to

place CHs and MNs at some designated locations. Different

from the earlier works, in [11], authors proposed an energy-

aware distributed dynamic clustering protocol, where CHs

are selected according to on-demand basis. In the proposed

protocol, tentative CHs are selected considering delay times.

Finally, the authors use fuzzy logic to assess the fitness cost of

the tentative CH to become a CH. The fitness cost is derived

considering two metrics, viz. node degree and node centrality.

Uniform Clustering. In a different attempt, Alaei and

Ordinas [5] proposed a clustering algorithm, where CHs are

selected by the sink. In this algorithm, each cluster size is

calculated based on the overlapped area between Field of

View of sensors. Recently, Schranz and Rinner [12] proposed



a dynamic clustering technique for IoMT. In the initial round

of the proposed technique, CH is elected based on the avail-

able resources and a visibility parameter. For the subsequent

rounds, CHs are selected based on the auction and CH of

previous round initiate the auction process. In an interesting

work [9], authors proposed an on-demand clustering protocol,

where CH is selected based on the residual energy. To reduce

communication overhead, the authors used directed diffusion

in their proposed protocol.

In context to non-uniform clustering approaches, we have

the following observations. (1) Except the works in [9], [11],

none of the works consider the on-demand based clustering

approach as a solution to maximize the network lifespan.

Therefore, we are motivated to devise an on-demand based

clustering protocol. (2) In majority of the literature, residual

energy is considered as the only parameter to select a CH,

thus, overlooking the possible conflict of several nodes with

same residual energy. Motivated by this fact, we considered

average energy usage in addition to residual energy level while

selecting CH.

III. SYSTEM MODEL

In this section, we describe the models used in this work.

In particular, Section III-A presents the network model. Sec-

tion III-B discusses the network operation model. We then

introduce the energy model in Section III-C. Finally, in Sec-

tion III-D, we describe the channel model.

A. Network Model

We consider a network area χ of radius D which is covered

by a disk sector of angle φ (see Fig. 1) [13]. The disk sector

is partitioned into i ring sectors or slices, where i = 1, . . . , N .

The sink is considered to be located at the vertex, as shown in

Fig. 1, and responsible for gathering data from nodes. Nodes

are randomly and uniformly deployed across χ with density

ρ. We assume a slice based network area, and argue that this

slice shape is general enough to estimate many other shapes

like rectangle, triangle and square [8], [13].

In this work, we consider deployment of static heteroge-

neous IoMT nodes. Here, by heterogeneous node, we mean a

node that can regulate its communication range. At present, a

node with variable communication range (e.g., like Crossbow

IRIS, TelosB motes) is commercially available. For example,

Keally et al. [14] designed a real-time human traffic detection

mechanism using similar heterogeneous nodes as we consid-

ered in this work. Further, we consider continuous monitoring

applications like wildlife tracking in which each node cap-

tures images continuously, however, it generates imagery data

packets only when it has sensed an event (e.g., discovering

rare animal species). Once an event is detected, the cluster

setup phase is triggered and nodes that detect an event only

take part. Rest of the nodes remain in active mode for detecting

future event(s) and/or forwarding data packets. For the sake of

simplicity, in this paper, the cluster setup phase is divided into

two sub-phases, namely, CH selection and cluster building.

After cluster setup, each MN acquires imagery data from the

Fig. 1. Network area division into slices.

surrounding environment, generates n bits data packet, and

transmits the data packet to its CH at every round [13]. In

contrast, the CH aggregates and forwards the data packets

received from both its MNs and neighbouring CHs which

are far away from the sink. This process repeats till the data

packets arrive at the sink from a MN through intermediate

CHs. As we divide the area χ into N slices, thus N types of

clusters exist in the network. In particular, the clusters located

nearest to the sink are placed in the 1st slice (i.e., 1st type),

and the ones farthest from the sink are placed in the N -th slice

(i.e., N -th type). In this work, we assume that the MNs whose

distances from the sink fall in (ri−1, ri] are organized into

clusters of the i-th type, where 1 ≤ i ≤ N and r1 < . . . < rN
= D.

B. Network Operation

In this work, we assume optimality in both data collection

and routing path formation methods as proposed by Lee et

al. [15]. In the proposed optimal data collection and routing

path formation methods, once the nodes are deployed, network

set-up phase starts. In this phase, each node learns about

their one-hop neighbours by exchanging messages among

themselves and record their assigned node ID. Once the net-

work finishes the set-up phase, the connectivity graph rooted

at the sink is formed. Next, to determine the optimal data

collection and routing path that balance the overall energy

consumption among the nodes, an optimal Directed Acyclic

Graph (DAG) is formed based on the connectivity graph. For

detailed discussion, the readers may refer to [15]. After the

DAG construction, the network is aware about the parent set

of node and child set of node. A child node in any slice

determines an optimal routing path to forward the data packet

to a parent node towards the sink which has the link with the

maximum remaining usage and optimal flow for sending its

data. Next, the parent node employs the same procedure to

choose the next forwardee node for sending its data packet.

This process is repeated till the data packet arrives at the sink.

C. Energy Model

In this paper, we consider the most popular energy model,

i.e., first order radio model [10], [13], as our energy model,



where wireless transmissions and receptions dominate energy

consumption of a node. In addition to transmission and

reception, a node (i.e., CH) also consumes energy for data

aggregation. According to this model, the energy consumed for

transmission and reception is as follows: energy consumption

for transmitting an n bits data packet by a node located at i-th
slice over an adjustable transmission range Ri is eitr(n,Ri) =
(eelec + eampR

2
i )n = eitn, where eit = (eelec + eampR

2
i )

and eit is the energy consumed to transmit one bit data by

a node located at the i-th slice. In contrast, the energy con-

sumption for receiving and aggregating an n bits data packet

is ere(n) = eelecn = ern, and eda(n) = ean, respectively,

where er = eelec, er and ea is the energy consumed for

receiving and aggregating one bit data, respectively.

Since image compression is also considered as an integral

part of IoMT, energy model described above needs slight

modifications. According to the experiments on energy con-

sumption in image compression algorithm [16], an image

compression enabled node can compress the captured images

and reduce the size of packet workload forwarded to the sink.

To finish the image compression task, a node has to spend

extra processing energy. If kt is image compression ratio,

the energy model considering image compression algorithm

in our work can be summarized as: eitr(n,Ri) = kte
i
tn and

eda(n) = kcomean, where kcom is the amplified gain for extra

image compression operation and kcom > 1.

D. Channel Model

In this work, we use a Rician fading model [13] for

describing the channel between two CHs, and also between

the CH and the sink. In this model, the probability density

function of the received signal amplitude is given by:

f(ξ) =
ξ

σ2
e−(ξ2+s2/2σ2)I0

(

ξ
√

2Rf

σ

)

,

where ξ is a normalized random variable that represents the

fluctuation in the fading process, σ2 is the variance of the

multipath components, s is the amplitude of the line-of-sight

component, I0(·) is the zero-order Bessel function of the first

kind and Rf is the Rician factor, given by: Rf = s2/2σ2. It is

worth noting that as the Rician factor goes to zero, ξ becomes

a Rayleigh random variable [17]. In this channel model, for a

transmitter-receiver separation distance l, channel gain is given

as:

h(l) =
GtGrω

2

(4πl0)2

(

l

l0

)

−η

ξ = L(l0)

(

l

l0

)

−η

ξ, (1)

where L(l0) = GtGrω
2/(4πl0)

2 is the path loss of the close-

in distance l0, Gt and Gr are the corresponding gains of the

transmitting and receiving antennas, ω is the wavelength of the

carrier signal, η is the path loss exponent (2 ≤ η ≤ 6). Since, ξ
is random, correct reception of a signal can be guaranteed only

when it is represented on a probabilistic basis. Accordingly,

in our work, reliable reception of a signal is represented as

Pr{erx ≥ τ} ≥ δr, where erx is the energy of the received

signal, τ is a predefined energy threshold and δr is the required

link reliability.

IV. ANALYSIS ON NETWORK LIFESPAN MAXIMIZATION

In this section, in contrast to the existing heuristic load

balancing based clustering technique, we investigate the clus-

tering technique based on an analytical approach to maximize

network lifespan. In our analysis, we consider nodes are

arbitrarily placed, however, their locations are known. Further,

we consider the definition of network lifespan as:

Network Lifespan. The network lifespan is defined as

the time until the first CH dies [8]. A CH is considered as

dead when the residual energy is less than a pre-determined

threshold, i.e., when it is neither able to transmit nor able to

receive any data.

Although the network lifespan from the beginning until

the instant at which the last CH dies is measurable using an

analytical model, it is not meaningful since the coverage and

connectivity cannot be guaranteed in this entire time period.

In contrast, the network lifespan from the beginning until

the instant at which the network gets partitioned, it totally

makes sense. However, time period is not measurable. We thus

consider the above definition to make the network lifespan

meaningful and measurable. In fact, this definition of network

lifespan is application-independent, and thus is suitable for

diverse applications.

The average intra-cluster and inter-cluster traffic load carried

by the CHs of i-th slice is given by π(r2i − r2i−1)ρnφ/2π and

π(r2N − r2i )ρnφ/2π, respectively, where i = 1, . . . , N . Note

that by network model, the number of CHs in the i-th slice is

approximately given by 2ri
ri−ri−1

φ
2π . Let Ejk

i be the expected

energy consumption by CH j in the i-th slice for transmitting

all of its traffic to the one-hop neighbor CH k and Rjk
i be the

distance between these two CHs. It is worth mentioning that

the value of Ejk
i is different for any two communicating CHs.

Therefore, the expected energy consumption by the CH j in

the i-th slice is given as:

Ejk
i =

π(r2N − r2i−1)(ri − ri−1)

2ri
ρn(er + eit + ea), (2)

where eit = eelec + eamp

(

Rjk
i

)2

. The expected energy

consumption by a CH in the N -th slice can be calculated

applying (2) and using the standard convention that a sum of

terms is zero if its lower index is greater than its upper bound.

Let eti be the over-the-air RF energy consumed when

transmitting one bit from CH j in the i-th slice to CH k
located at distance Rjk

i . It is worth mentioning that eti is a

function of the distance between two communicating CHs. So,

the above (2) can be rewritten as:

Ejk
i =

π(r2N − r2i−1)(ri − ri−1)

2ri
ρn(ψ + eti), (3)

where ψ = (er + eit + ea). From channel model (1), the over-

the-air RF energy consumed for receiving one bit, eri, is given



as:

eri = etiL(l0)

(

Rjk
i

l0

)

−η

ξ.

For a Rician fading channel, the link reliability requirement

can be expressed as:

δr =Pr {eri ≥ τ} = Pr

{

ξ ≥
τ

etiL(l0)

(

Rjk
i

l0

)η}

=e
−τ

etiL(l0)

(

R
jk
i
l0

)η

.

From the above expression, we can express eti as:

eti =
−τ

L(l0) log δr

(

Rjk
i

l0

)η

.

According to our routing model (see Section III-B), let h be

the maximum number of links of an end-to-end path. Hence,

to generate the constraint on path reliability, δp, the minimum

link reliability must be: δr = δ
1
h
p . Therefore,

eti =
−hτ

L(l0) log δp

(

Rjk
i

l0

)η

= β
(

Rjk
i

)η

,

where β = −hτ/L(l0)l
η
0 log δp and it is a constant. Conse-

quently, the energy consumed by CH j in the i-th slice, given

in (3), can be rewritten as:

Ejk
i =

π(r2N − r2i−1)(ri − ri−1)

2ri
ρn
(

ψ + β
(

Rjk
i

)η)

. (4)

To maximize the network lifespan, our objective is to com-

pute {ri}, where i = 1, . . . , N , for minimizing the maximum

energy consumption rate among all the CHs. The calculation

procedure can be formulated by the following optimization

problem:

maxmin

{

ein

Ejk
1

, . . . ,
ein

Ej′k′

N

}

,

where ein is the initial energy of a CH. Introducing an

auxiliary variable t, where t ≤ max
{

Ejk
1 , . . . , Ej′k′

N

}

, the

above objective function can be transformed into the following

optimization problem:

min
r1,r2,...,rN

t, (5)

subject to

ρnφ

2

(

r2i − r2i−1 +

N
∑

h=i

(

r2h+1 − r2h
)

)

−
ρnφ

2

N
∑

h=i−1

(

r2h+1 − r2h
)

,

∀1 ≤ i ≤ N (6)

t
πρn(r2N − r2i−1)(ri − ri−1)

2ri

(

ψ + β
(

Rjk
i

)η)

≤ ein, (7)

ρnφ

2

(

r2i − r2i−1

)

> 0,
φri

2π(ri − ri−1)
> 0. (8)

The constraint (6) guarantees inter-cluster flow preservation,

i.e., all data packets generated at or forwarded to a slice

are pushed out of it. The constraint (7) specifies that in the

lifespan t no node consumes more than its available energy

ein. The constraint (8) specifies that the intra-cluster data

flow and number of clusters in a slice is non-negative. If we

examine both the objective function and the constraints, the

problem is convex. Thus, using interior point method [18],

the above problem can be easily solved. To solve (5)-(8), one

needs to know network size and network information, e.g.,

packet size. It is easy to check that the nature of the objective

function is convex. It is worth reminding that we consider the

nodes in a slice report data to the sink in shortest path, hence

the derived lifespan of CH provides the upper bound of the

network lifespan.

V. PROPOSED CLUSTERING PROTOCOL: DISC

In this section, we present the main design of DISC.

Particularly, we first describe node deployment strategy in

Section V-A. Section V-B presents the cluster setup phase.

Finally, in Section V-C, we discuss the data packet collection

phase. It is worth mentioning that we already discussed the

routing path formation and evaluation of optimal cluster radius

in Section III-B and Section IV, respectively.

A. Deployment

In this paper, we consider the stochastic deployment where

nodes are dropped in unfriendly environments. In particular,

we consider that nodes are uniformly and independently

distributed in different slices around the sink. The probability

fa that a point is covered by nodes is:

fa = 1− e−ρπR2
s , (9)

where Rs is the sensing range a node.

Our objective is to deploy nodes in the slice based net-

work area (see Fig. 1). To achieve this goal, we propose to

decompose the i-th slice into multiple circular domains so

that each circular domain is regarded as a cluster. Next, the

nodes are uniformly and independently distributed within each

cluster using (9). After deployment of nodes, without loss of

generality, we assume that the IoMT passes thorough a training

process where each node learns about the slice and the region

to which it belongs. Recently, a number of training protocols

were proposed. In this work, we assume a training protocol as

proposed in [19].

B. Cluster Setup

In DISC, unlike time driven CH selection, we propose

a novel on-demand based CH selection strategy to reduce

the extra message overhead during cluster formation. All the

nodes in the network are eligible to become CHs, and they

are selected through a proposed process. This CH selection

process is divided into two sub-phases: CH selection (see

Section V-B1) and cluster building (see Section V-B2).



1) CH Selection Sub-phase: The proposed CH selection

strategy is triggered once an event of interest (e.g., detection

of an intruder) is detected. Node(s) that detects an event

(hereafter referred to as detected node) only takes part in the

CH selection and cluster building processes. Rest of the nodes

remain in active mode for detecting future event(s) and/or for-

warding data packets. Upon detecting an event, a detected node

poses itself as acting CH and broadcast Hello(ID,Ei, Er)
message around the cluster radius to rest of the detected nodes,

where ID, Ei and Er denote the node identification number,

expected energy consumption rate and residual energy level

of the detected node, respectively. It is worth mentioning that

the cluster radius is determined by solving our optimization

problem given in Section IV. However, during inter-cluster

communication a CH uses higher energy level so that the

transmitted data packet can reach atleast two or more cluster

diameters. Henceforth, for the sake of simplicity, we call “rest

of the detected nodes within cluster radius” as neighbours

of the acting CH. After a detected node receives the Hello
message, all the neighbours send Hello Ack(ID,Ei, Er)
message to the acting CH. The acting CH calculates average

energy consumption (AEi) and average residual energy (AEr)
based on the number of Hello Ack(ID,Ei, Er) messages,

Ne, received from the neighbouring nodes. The acting CH

nominates the k-th node from the neighbours within the cluster

radius as new CH whose Ei is minimum, i.e., AEi > . . . >
Emin

i , and Er is maximum, i.e., AEr < . . . < Emax
r . If

there is more than one node with the same
(

Emin
i , Emax

r

)

,

one of them is chosen randomly. We calculate AEi and AEr

as follows:

AEi =
∑N

i

Ei

Ne
, AEr =

∑N

i

Er

Ne
.

2) Cluster Building Sub-phase: After CH selection,

the newly selected CH broadcasts a selection message,

Head Msg, within the cluster radius by regulating commu-

nication range Ri. The Head Msg message contains node

ID, present energy consumption rate and residual energy.

After receiving Head Msg message, a node responds to

the newly selected CH by sending Join Msg message. If

a node receives more than one Head Msg message from

its neighbouring CH, it will choose to join the nearest CH

by sending Join Msg message. Here, we assume that a

node calculates the distances between itself and neighbouirng

CHs based on received signal strength. Detailed discussion of

distance calculation based on received signal strength is out of

the scope of this work. For detailed discussion, the readers may

refer to [20]. The CH on receiving Join Msg message ac-

knowledges the joined node by sending Head Acpt message

and designate that joined node as MN. As a CH can regulate

its communication range, thus no node in the network is left

away from the cluster framework.

C. Data Packet Collection

After the cluster formation, each CH in the network gener-

ates a Time Division Multiple Access (TDMA) schedule for its

MNs. In TDMA, the available bandwidth is normally divided

into frames and each frame is divided into time slots. The

length of the frame depends on the number of MNs and time

allotted for each MN for data transmission. In this work, we

assumed that all the MNs are assigned the same amount of

time slots and the length of the frame is decided based on

the number of received Join Msg messages. After receiving

the schedule, each MN sends its sensed data to its CH by

following the TDMA schedule. MNs are awake only during

their allotted time slot(s) for transmission and sleep for rest of

the time. However, a CH remains in an active/awake state to

receive sensory data from its MNs. Since the data gathered by

the CHs are highly correlated, hence each CH aggregates the

received data packets into a single data packet. Finally, at the

end of the frame, the aggregated data packets are sent to the

sink through intermediate CHs. In case, if there is no CH, then

intermediate nodes from the optimal DAG (see Section III-B)

are chosen to forward the data packets. A typical time line of

operation of our proposed algorithm is illustrated in Fig. 2.

In IoMT, due to the broadcast nature of wireless links,

when a MN transmits a packet to its CH, in some cases,

the packet may reach to the nearby CHs. To avoid this inter-

cluster interference, we assumed that the MN uses spread code.

Particularly, when the MNs send the packet to their respective

CHs, the spread code of the concerned cluster is attached to

avoid inter-cluster interference.

Fig. 2. Time line of DISC.

VI. EXPERIMENTAL EVALUATION

In this section, we compare the performance of DISC

with that of two recent clustering algorithms, namely, Delay-

constraint Unequal Clustering based on weighted Function

(DUCF) [6] (belong to IoT domain), and Energy Level based

Passive Clustering (ELPC) [9] (belong to IoMT domain). To

make the performance comparison more realistic, we consider

two variants of DISC, DUCF and ELPC. In one variant, we

consider channel model as Rician fading whereas, in another

variant Rayleigh fading is considered. Since IoMT can operate

in both indoor and outdoor environments, we consider these

two popular channel models while measuring the performance

of all the competing schemes. It is worth noting that Rician

fading is particularly suitable for indoor environment, whereas,

Rayleigh fading is particularly suitable for outdoor envi-

ronment [17]. During implementation of DUCF and ELPC,

similar to DISC, we considered that nodes are randomly and

uniformly deployed in the network area.



A. Experimental Setup

For performing the experiments, we used MATLAB simula-

tor. During experiment, we use a real-world publicly-available

dataset for pedestrian detection [21]. In our experiments, we

deployed nodes in an area consisting of 6 slices at an angle

φ = 600. During experiment, nodes are distributed in such a

way that nodes with smaller ID numbers are closer to the sink,

whereas, those with larger ID numbers are far away from the

sink. We simulate all the schemes under both ideal and realistic

scenarios. In ideal scenario, the nodes used routing protocol

as stated in Section III-B, MAC layer as ideal, and consume

energy for transmission, reception, sensing and processing.

On the contrary, in realistic scenario, the nodes additionally

use a MAC layer protocol which includes idle/sleep schedule.

Moreover, unlike the ideal scenario, in realistic scenario,

energy consumption is considered for sensing, remaining

idle, and sleeping in addition to transmission, reception and

aggregating. Further, energy consumption rates for sensing,

remaining idle, and sleeping are considered as 20%, 5%, and

2.5% of the energy consumption rate of reception [22], respec-

tively. The communication between CHs considers Receiver-

Centric Medium Access Control (RC-MAC) protocol [23] as

the underlying MAC protocol. RC-MAC protocol is specially

designed for on-demand application scenario. Finally, we

considered a video sequence with the spatial resolution of

1280×720 pixels, and the frame rate as 60 frames per second.

The video sequence is encoded using a fast implementation

of H.264/AVC [22] at various quantization step sizes, with a

group of pictures length of 25 and a frame rate of 60 frames

per second.

The width of a slice in the network is obtained by solving

(5)-(8) using CVX solver [24]. To make the comparison fair,

we deployed 200 nodes, and a sink is deployed at the coordi-

nate (0, 0). In simulation experiment, for all the schemes, we

consider that once an event of interest is captured by a node,

it generates packets at the constant bit rate of 40 kbps and

transmits over bandwidth 1 Mbps, whereas duration of each

data gathering round is 20 sec. Unless specified otherwise,

we use the following parameters throughout the experiment:

Rf = 20, Rs = 10 m, et = 60 nJ, er = ea = 50 nJ,

ein = 50 J, n = 400 bits, kcom = 1.2, kt = 55%, l0 = 10
m, Gt = Gr = 1, τ = 10−17, η = 4, δr = 0.99 and

ω = 0.125 m (2.40 GHz). We consider the energy cost to

run the transmitter/receiver radio circuitry per bit processed

as (eelec) 50 nJ/bit. Also, we consider the energy used by the

transmitter amplifier (eamp) to achieve an acceptable signal

to noise ratio (30 dB) as 10 pJ/bit/m2. Furthermore, we use

the same parameters with same values for RC-MAC protocol

as described in [23]. Extensive simulation is performed with a

95% confidence level and average results of 200 independent

runs are taken while plotting the results.

B. Performance Metrics

To evaluate the performance of DISC, DUCF and ELPC, we

conducted three sets of experiments, where, first set measures

energy balancing in the network, second set verifies the

enhancement of network lifespan, and final set measures the

Peak Signal-to-Noise Ratio (PSNR). In our experiment, energy

balance is measured using Average Energy Consumption Rate

per CH (Avg ECR per CH) in a slice as given in (5).

We consider network lifespan as defined in Section IV, and

PSNR is measured as: the mean square error of each pixel

between the original and received images [22]. For the sake of

clarity, in simulation plots, schemes named with ‘(R)’ signify

performances in realistic scenario and the schemes with ‘(I)’

denote performances in ideal scenario.

C. Energy Balance

Figure 3 shows avg ECR per CH for both indoor and

outdoor environments. Here, we observe that in DISC, ir-

respective of scenarios, the plots of avg ECR per CH for

both the environments are fairly constant for all slices. For

example, in indoor environment, avg ECR per CH is 12.51

µJ/sec and 21.83 µJ/sec for ideal and realistic scenarios,

respectively. In contrast, in outdoor environment, it is 25.70

µJ/sec and 45.36 µJ/sec for ideal and realistic scenarios,

respectively. It is worth noting that, in DISC, avg ECR per

CH is significantly less compared to all the competing schemes

irrespective of scenario and environment. Particularly, the plot

shows that DISC outperforms the other schemes. Further, it

is noticed that, among all the schemes, avg ECR per CH

is highest in DUCF and lowest in DISC. For example, avg

ECR per CH of DISC is 108% and 45% less than that of

DUCF and ELPC, respectively during ideal scenario in indoor

environment. Similarly, DISC is 46.15% and 25.15% less than

that of DUCF and ELPC, respectively during ideal scenario in

outdoor environment. This is due to the fact that, in DISC, the

CH selection process is optimal and energy efficient compared

to DUCF and ELPC. Further, irrespective of environment, CHs

in 1st slice of both DUCF and ELPC have maximum avg

ECR per CH, whereas, CHs in the farthest slice have lowest

avg ECR per CH. Interestingly, irrespective of scenario and

environment, avg ECR per CH plots of DISC are relatively

steady throughout the slices. This indicates that DISC is more

energy balanced compared to DUCF and ELPC. Similar to

the ideal scenario, in the realistic scenario, the plot of avg

ECR per CH for all the competing schemes are more or less

the same. For all the schemes, if we compare the results of

both the scenarios (irrespective of environment), it is observed

that in all the cases avg ECR per CH in realistic scenario is

higher compared to avg ECR per CH in ideal scenario. The

additional energy usage for realistic scenario is due to the

implementation of MAC protocol. Finally, it is noticed that

avg ECR per CH is higher in outdoor environment compared

with indoor environment. It is expected, since the propagation

condition is more severe in outdoor environment, causing more

number of re-transmissions, eventually resulting in higher avg

ECR per CH.

D. Network Lifespan

Figure 4 shows the network lifespan of all the competing

schemes in indoor and outdoor environments. It is observed



(a) Indoor environment

(b) Outdoor environment

Fig. 3. Average energy consumption rate per CH in ideal and realistic
scenarios.

from the plot that DISC outperforms the other schemes. In

particular, for indoor environment, it is observed from Fig. 4(a)

that the network lifespan of DISC is 93.17% and 32.25%

more than that of DUCF and ELPC, respectively, during

ideal scenario, whereas, in realistic scenario, it is 59.67%

and 37.42% more than that of DUCF and ELPC, respectively.

Similar to Fig. 4(a), the nature of plot for different competing

schemes follow similar characteristic in Fig. 4(b). Moreover, in

DISC, nearly flat nature of the plot ensures that in all the slices,

network lifespan terminates in more or less the same time as

compared to DUCF and ELPC. This ensures that energy in

DISC is balanced to a greater extent than both the competent

schemes.

Summarily, for all the schemes, if we compare the exper-

imental results of network lifespan under both scenarios and

environments, it is reduced in realistic scenario, as there is

additional energy consumption due to implementation of MAC

protocol. Finally, irrespective of scenario, if we compare the

performance of all the schemes under indoor and outdoor envi-

ronments, network lifespan is lowest in outdoor environment.

This is because of harsh propagation conditions in outdoor

environment, eventually resulting in lowest network lifespan.

E. PSNR

In this section, we examine the performance of all the

strategies in terms of the received video quality measured

(a) Indoor environment

(b) Outdoor environment

Fig. 4. Network lifespan in ideal and realistic scenarios.

through the value of the PSNR. During conducting of the

experiment, we consider realistic scenario. Fig. 5 shows the

PSNR of all the competing schemes in both indoor and outdoor

environments. We observe from Fig. 5 that the proposed DISC

protocol performs well in both environments. In particular,

DISC significantly outperforms DUFC and ELPC. For ex-

ample, in indoor environment (refer Fig. 5(a)), the average

PSNR value of DISC is 14.28% and 26.04% more than that

of DUCF and ELPC, respectively. On the contrary, in outdoor

environment (refer Fig. 5(b)), the average PSNR value of DISC

is 12.26% and 24.17% more than that of DUCF and ELPC,

respectively. For all the schemes, if we compare the results

of both indoor and outdoor environments, it is observed that

the average PSNR is more in indoor environment compared to

outdoor environment. It is due to the fact that the propagation

condition is more severe in outdoor environment, causing

degradation of the video quality received at the sink and thus

the poor PSNR.

VII. CONCLUSION

In this work, we analyzed the problem of network lifespan

maximization by balancing energy consumption at different

CHs in IoMT. Analysis revealed the optimal cluster radius

of each level have significant role in maximization of net-

work lifespan by avoiding energy hole [22]. Considering the

results of this analysis, we developed DISC, an on-demand,



(a) Indoor environment (b) Outdoor environment

Fig. 5. Performance comparison in terms of PSNR.

distributed optimal clustering protocol where CHs are selected

dynamically for efficient energy usage among the nodes. The

use of on-demand based clustering mechanism reduces clus-

tering overhead because no clusters are maintained unless they

are needed. Extensive simulations are performed to measure

the performance of the proposed DISC protocol. Simulation

results clearly demonstrate that our proposed protocol achieves

more than 32% network lifespan compared to two state-of-

of-the-art non-uniform clustering protocols [6], [9]. As future

work, we seek to study the proposed clustering strategy by

including more realistic scenario, such as mobility of CH.
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