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SARA: Secure Asynchronous Remote
Attestation for IoT Systems

Edlira Dushku , Md Masoom Rabbani , Mauro Conti , Luigi V. Mancini , and Silvio Ranise

Abstract— Remote attestation has emerged as a valuable
security mechanism which aims to verify remotely whether or
not a potentially untrusted device has been compromised. The
protocols of Remote attestation are particularly important for
securing Internet of Things (IoT) systems which, due to the
large number of interconnected devices and limited security
protections, are susceptible to a wide variety of cyber attacks.
To guarantee the integrity of a software running on a single
device, remote attestation is usually executed as an uninterrupted
procedure: at the attestation time, a device stops the normal
operation and executes the attestation of the entire device
without interruption. The remote attestation protocols that aim
to attest a large number of devices also follow the assumption
on uninterrupted execution: when a device attests its network
neighbours, each device verified in the neighborhood suspends
its normal operation until the attestation protocol is completed.
To avoid unnecessary suspension of the normal operation of
the devices, this paper proposes a novel Secure Asynchronous
Remote Attestation (SARA) protocol that releases the constraint
of synchronous interaction among devices. In particular, SARA is
an attestation protocol that exploits asynchronous communication
capabilities among IoT devices in order to attest a distributed
IoT service executed by them. SARA verifies both that each IoT
device is not compromised (device trustworthiness), and that the
exchanged communication data have not maliciously influence
the communicating devices (legitimate operations). By tracing the
execution order of each service invocation of an asynchronous
distributed service, SARA allows each service to collect accurately
historical data of its interactions, and transmits asynchronously
such historical data to other interacting services. We have
implemented and validated SARA through a realistic simulation
on the Contiki emulator that demonstrates the functionality and
efficiency of our protocol. The results confirm the suitability of
SARA for low-end devices.

Index Terms— Internet of Things (IoT) security, remote attes-
tation, asynchronous communication, publish/subscribe, distrib-
uted IoT services.
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I. INTRODUCTION

THE recent Internet of Things (IoT) evolution is leading
towards multi-functional IoT devices that are capable

of performing several operations concurrently. With IoT ser-
vices increasingly provided by IoT devices, IoT systems are
expected to deliver large-scale distributed applications that
include a wide range of interacting services. For instance,
a smart city application comprises enormous number of ser-
vices that interact among themselves to provide various dis-
tributed services such as smart lighting, autonomous vehicles
support, smart grids etc. In general, large-scale systems require
scalable communication mechanisms that can deal with poten-
tial network reliability issues. In IoT setting, asynchronous
communication is accepted as an effective communication
method which allows the communication among IoT devices
that are decoupled in space (i.e., interacting parties may
not address directly each other) and time (i.e., interacting
parties are not online at the same time during the commu-
nication). For this reason, the major asynchronous protocols
which adopt the publish/subscribe paradigm [27], [29] such
as MQTT [3], DDS [4], AMQP [2] etc., are very popular
and stable communication protocols in IoT systems [25], [35].
Also, the asynchronous protocols are de-facto present
in real-life IoT applications, for instance, both Google
Core IoT1 and Amazon Web Services (AWS) IoT2 adopt
MQTT protocol to handle the communications among IoT
services.

Due to the large number of interacting IoT services,
the importance of the operations that these services perform,
and the lack of complex security protection, the IoT sys-
tems are becoming a favorite target for cyberattacks. Many
adversaries aim to exploit these services to access sensitive
information of the IoT devices, disrupt their normal operation,
and even corrupt the data and software to violate the legitimate
operations of the devices [40], [45], [55]. Remote attestation
can serve as a suitable security protocol to provide evidence
about the integrity of individual devices. A remote attestation
protocol runs between two parties: a trusted party called
Verifier and an untrusted party called Prover. Traditionally,
at the attestation time, the Prover sends evidence about the
current content of its memory to the Verifier, whereas the
Verifier checks the information, and establishes whether a
Prover is trustworthy.

1https://cloud.google.com/iot-core/
2https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
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The execution of remote attestation protocol is typically
uninterrupted, enabling the detection of mobile adversaries
which try to evade detection by getting relocated during
the attestation. The non-interruptibility is generally preserved
even for collective attestation protocols which attests a large
number of devices synchronously [8]–[10], [15], [22], [23],
[38], [44], [46]. In these schemes, when a Prover A interacts
with Prover B during the attestation, Prover A has to wait
for a response from Prover B and then proceeds with further
operations. Further, the integrity of the Prover does not only
depend on the integrity of the software and the data that
are running on Prover’s memory. The communication data
exchanged among previous service interactions also affect
the current state of the Prover [8], [22], [23]. Therefore,
an important prerequisite for remote attestation protocols is to
provide evidence about the interactions and the communication
data exchanged during these interactions.

In this paper, we propose a novel protocol for Secure Asyn-
chronous Remote Attestation (SARA) of a group of devices
that communicate among themselves by publish/subscribe par-
adigm [27], [29] to provide distributed IoT services. Overall,
SARA provides the following main contributions:

1) Asynchronous attestation. SARA performs the attes-
tation of a group of IoT devices without interrupting
the normal operation of all the devices at the same
time. In particular, SARA considers the typical and
most common scenario of IoT systems where the inter-
action among devices is event-driven and follows the
publish/subscribe paradigm. The design of the remote
attestation protocol based on this paradigm allows a
device that completes the local attestation to resume its
normal operation although the attestation may progress
on other devices.

2) Selective attestation. SARA allows the Verifier to
establish both the trustworthiness and the legitimate
operations of a portion of the IoT system by interacting
only with a subset of the devices in the network. For
example, after that SARA has collected asynchronously
the historical data of the services in a large-scale IoT
system, the Verifier can interact only with the actuators
that perform the final action, to establish the trustworthi-
ness of all the devices involved in the provision of that
specific service and verify their legitimate operations.

3) Historical evidence. SARA aims at providing each
Prover with historical information about its own inter-
actions with other IoT services. This allows SARA to
detect not only the malicious IoT devices, but also
other devices which are performing a non-intended
operation due to their interactions with the infected
device. However, collecting historical secure evidence
is particularly challenging in event-driven asynchronous
communication models because it is difficult to pre-
dict the time and the order of the service interactions.
In this context, the existing approaches that aim to
periodically check software integrity and data integrity
(e.g., in [21], [32]) will not be useful. Also, some of
the proposed attestation protocols that require the syn-
chronization of clocks between devices does not seem

realistic in large IoT systems. In order to overcome the
challenge of ordering asynchronous events, SARA uses
the concept of vector clock [28], [43] which enables
the precise tracing of event occurrences.

4) Performance evaluation. SARA is implemented in
Cooja, the Contiki [5] network simulator. The simulation
results are promising, and demonstrate the effectiveness
of SARA for asynchronous IoT communication.

Outline: The remainder of this paper is organized as follows:
In Section II we discuss the state-of-the-art. We describe
the problem setting in Section III and provide a background
overview in Section IV. In Section V we present the system
model. In Section VI, we present the adversary model and
define the required security properties. Section Section VII
and Section VIII present the protocol details. In Section IX,
we provide the evaluation of SARA along with security analy-
sis in Section X. Finally, we discuss the proposed solution
in Section XI and the paper concludes in Section XII.

II. RELATED WORKS

In this section, we discuss related works in the domain
of Remote Attestation. In general, remote attestation is a
well-known security protocol that aims to identify adver-
sarial presence in device(s). Based on architectural designs,
remote attestation is typically classified into three main cat-
egories; (1) software-based attestation (e.g., [49], [51], [53]),
(2) hardware-based attestation schemes (e.g., [12], [36], [47]),
and (3) hybrid attestation schemes (e.g., [19], [26], [37]).
The aforementioned schemes have their distinctive advan-
tages and disadvantages regarding the hardware assump-
tions, adversary capabilities, and the security level that they
provide. For instance, due to the lack of requirement for
a trusted hardware, software-based attestation schemes are
low-cost solutions compare to hardware-based attestation
approaches, but they provide less security guarantees. On the
other hand, hardware-based attestation schemes base their
security on the use of a specialized hardware platform as
secure execution environment, such as Trusted Platform Mod-
ule (TPM) [14], ARM TrustZone [13], and Intel Software
Guard Extensions (SGX) [6], which guarantee that the exe-
cution of security-critical parts of the attestation protocol is
shielded from compromised software on the device. However,
the requirement for costly specialized hardware-security mod-
ules makes hardware-based schemes usually unsuitable for
low-cost Internet of Things (IoT) devices. The recent remote
attestation protocols for IoT devices have generally adopted
the hybrid architecture which relies on the presence of a
minimal read-only hardware-protected memory to guarantee
uninterrupted, safe and secure code execution of the remote
attestation protocol.

Swarm Attestation: Remote attestation schemes for large
networks aim to address the scalability issue of single-device
attestation schemes. The large networks are often described as
swarm network.3 Typically, the swarm attestation techniques

3A group of devices or embedded systems that work together for a specific
system or task.
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employ hybrid architecture and based on the network typol-
ogy assumptions, swarm attestation approaches are classified
in two categories: (1) swarm attestation of static networks
and (2) swarm attestation of dynamic networks. The static
swarm attestation techniques such as SEDA [15], SANA [9],
LISA [20] assume that the network is interconnected and static
during the entire period of attestation. Thus, these schemes
enable a overlay of spanning tree to construct the network
as a balanced binary tree, in which devices have parent-child
relationship. In these schemes, devices interact synchronously
during the attestation: each device attests its children and
reports back to its parent the attestation report. In LISAα [20],
which is the asynchronous version of the LISA protocol,
the nodes are not constructed in a parent-child relationship
when they are performing the attestation. Instead, in LISAα,
nodes perform independently and simultaneously their own
individual attestation, and they collaborate only for propa-
gating the attestation requests and responses. To release the
assumption of the aforementioned swarm attestation schemes
that the network is static and interconnected, dynamic swarm
attestation (such as PADS [10], SALAD [38]) enable the
swarm attestation in dynamic networks. These schemes pro-
vide a mechanism to address the challenges introduced by
highly dynamic networks by fusing consensus techniques in
remote attestation. In these approaches, devices first share
their respective “knowledge” with other devices, and then they
use consensus mechanisms to agree on a common knowledge
about the whole network. Here, devices interact synchronously
at the attestation time, even though these schemes do not
require the construction of a spanning tree for the collection
of attestation report.

Different from the aforementioned swarm attestation proto-
cols that aim to aggregate efficiently the individual attestation
results of a group of devices, SARA considers also the
communication data exchanged among devices. Additionally,
in SARA each device that completes the attestation resumes
immediately its regular operation even though the attestation
may progress on the other devices, unlike swarm attestation
schemes which attests devices synchronously. Finally, differ-
ent from LISAα which propagates asynchronously only the
attestation requests and responses, SARA attests a group of
devices that interact asynchronously and each device keeps a
historical evidence of these asynchronous interactions.

Distributed Attestation: Recent collective remote attestation
schemes propose different approaches that employ distributed
Verifiers instead of the presence of the traditional centralized
Verifier. US-AID [30] proposes an attestation mechanism for
autonomous devices for a dynamic network, in which devices
mutually attest each other and keep the snapshot of the
network. Here, the autonomous devices store their respective
neighbours attestation results which provide the network health
status. ESDRA [41] divides large IoT networks into several
clusters according to the communication distance and consid-
ers the previous behaviors of the devices in order to implement
a reputation mechanism. In ESDRA, each Prover gets attested
by three different neighbours, and then the cluster-head checks
the Prover’s corresponding score and reports it to the Verifier.
HEALED [31] provides an attestation mechanism which not

only detects malicious devices but also “heals” the infected
devices. In HEALED, each device periodically acts as a
Verifier and attests a random Prover. HEALED constructs
the segments of the Prover’s software as a Markle Hash
Tree (MHT), where the root of the tree is the measurement
of the software state of the Prover. Thus, a compromised
code segment will generate a non-valid hash value along
the path to the MHT root. Later, the compromised parts
will be replaced with the legitimate code retrieved from
another devices with the same software code. SAFEd [54]
proposes a decentralized attestation process that allows a pair
of IoT devices to validate their integrity without relying on an
external Verifier. DIAT [8] proposes an attestation mechanism
which secures the interaction among two devices. In DIAT,
the communication data exchanged among two devices are
authenticated along with the control-flow attestation of the
software module involved in generation of the data. Here, each
device contains the valid approximated control-flow paths and
the verification is done for each pair of interacting devices.
PASTA [39] proposes an attestation scheme for autonomous
devices that enables the attestation of many Provers. Here,
low-end embedded Provers collaborate periodically to generate
timestamped-“tokens”, which in turn attests the integrity of the
joining devices and also detects “missing” devices. The tokens
are validated using Schnorr-based multi signature.

Unlike the aforementioned distributed attestation protocols
that rely on distributed Verifiers, SARA assumes the presence
of a centralized Verifier. Typically, the distributed attestation
schemes validate the trustworthiness of each pair of devices,
while SARA attests many devices along with their exchanged
communication data. Compared to DIAT which validates the
exchanged data among each pair of devices, SARA also
checks the integrity of the devices that have indirectly influ-
enced each other due to an asynchronous interactions. For
instance, in a network where devices communicate through
publish/subscribe protocols, a device may receive simultane-
ous messages to act on. The aforementioned schemes do not
consider these specific cases.

III. PROBLEM STATEMENT

We consider an IoT system which involves many
multi-functional IoT devices. Each functionality offered by
a specific device is performed by an independent software
component called Service. To determine the state of a service,
we define a Service as trustworthy when its software has
not been modified by an attacker. We say that a Service
is performing a legitimate operation when the service is
currently performing an intended operation and the current
operation is not maliciously affected directly or indirectly by
the previous interactions among services. A subset of Services
across an IoT system may interact among themselves and
compose what we call a Distributed IoT Service.

Figure 1 shows a toy example of a distributed IoT service
in a smart city that consists of four IoT devices: a Brightness
sensor, a Smart bulb, an Electric power-hub and a Fire sensor.
For simplicity, we assume that each of these four devices runs
only one service. In general, a large-scale IoT application,
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Fig. 1. Toy example of interacting services in a Smart city scenario.

such as smart cities, smart homes, connected cars, etc., can
be seen as a collection of many devices running many distinct
distributed IoT services, each composed by many services that
interact with each other. Here, a Brightness sensor monitors
continuously the light intensity of the environment and pro-
vides the measurements to the Smart bulbs of a building. Based
on the light intensity, a Smart bulb automatically turns on and
off. When a Fire sensor detects fire in a building, it will also
send an alert to the nearby Electric power-hub which will stop
providing power to the building. As a consequence, the Smart
bulb will turn off.

For simplicity, the goal of the Verifier in this scenario is to
check both the trustworthiness and the legitimate operations
executed by the Smart bulb device. Note that, the data received
directly from the Brightness sensor and indirectly from the
Fire sensor define the correct behavior of the Smart bulb.
For example, even though it is dark and the light is off,
the Smart bulb can still be in a legitimate state if a fire
alarm has happened. Consider an attacker that compromises
the Brightness sensor and influences maliciously the Smart
bulb by reporting always high light intensity which will
affect the Smart bulb to remain turned off even in darkness.
Therefore, any of the existing remote attestation protocols that
validates only the program binaries and the data memory of
the Smart bulb device, without considering the exchanged
communication data with the Brightness sensor, will report
the Smart bulb as not compromised even though the Smart
bulb is in an incorrect state, that is, being off instead of
on. In order to verify the trustworthiness and the legitimate
operation executed by the Smart bulb, the Verifier has to
know the previous interactions of the services that directly or
indirectly affected the current state of the Smart bulb. Note that
the verification process of the Verifier is particularly complex,
since the Smart bulb could be correctly off if a fire alarm has
happened.

One crucial point has to do with the interactions that
happen concurrently. Consider for instance the abstract model
of event-driven interactions among 5 services depicted in
Figure 2. Here, these services implement a distributed pub-
lish/subscribe communication pattern where the publisher
can multicast events (i.e., messages or data) to subscribers.
In Figure 2, Service 2 and Service 3 concurrently receive an
event from Service 1, while Service 3 is triggered by events of

Fig. 2. Overview of service interactions in publish/subscribe paradigm.

anyone of the two services: Service 1 or Service 2. Thus, for a
Verifier that checks both the trustworthiness and the legitimate
operations of Service 5, it is critical to determine whether the
interaction Service 1 → Service 3 has happened before or
after the interaction Service 2 → Service 3. Indeed, different
order of these interactions may possibly yield different results,
and consequently the expected legitimate state of Service 5
would be different. Thus, the legitimate state of a service
depends on the ordering of the service interactions.

One could think of solving such an ordering problem
by relying on a centralized publish/subscribe model [27],
in which a broker receives all the events, assigns a sequence
order to each event, and routes the events toward the sub-
scribers by enforcing the order. In realistic IoT scenarios,
a publish/subscribe model consists of multiple distributed
brokers that route the events from publishers to subscribers
through different multi-hop paths. When distributed brokers
handle overlapping groups of subscribers, events ordering
still remains an issue. For instance, when two subscribers
share several subscriptions managed by different brokers, each
broker will assign the same events with different sequence
order which may differ among brokers. Thus, the published
events will be notified in different order to the subscribers.
To develop a solution that has general applicability, we con-
sider completely decentralized publish/subscribe model (with
or without brokers), and we focus on a secure solution to
guarantee events ordering among IoT services.

In an event-driven interaction model, in which a publisher
publishes an event that triggers the next action, the occurrence
of events is not predictable. Moreover, the clocks in IoT
devices are typically inaccurate which makes impossible the
perfect synchronization of different clocks among IoT devices.
Even if the devices are initially synchronized, their clock will
drift. Given the different communication delays that the event
delivery may introduce, it is difficult to determine exactly
when the events occurred. However, it is fundamental for the
Verifier to know what is the logical sequence of the events
interacting with a device, i.e., the order of occurrence of the
events and the data exchanged.

This article proposes a solution, in the context of the issues
described above, both to verify the integrity of the device D,
and to detect if D has been maliciously influenced by another
compromised service.

IV. BACKGROUND

We now provide some background knowledge about pub-
lish/subscribe paradigm and Clock Synchronization across IoT
devices.
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A. Architectural Properties of Publish/Subscribe

Large-scale distributed IoT applications usually implement
publish/subscribe communication paradigm to enable the asyn-
chronous communication among the services. In a typical
publish/subscribe communication pattern, publishers produce
data in the form of events, subscribers use subscri ptions to
register their interests on an event or a pattern of events [27],
[29]. Each subscriber gets notified when a published event
matches at least one of its subscriptions. In principle, the inter-
acting services in a publish/subscribe paradigm are decoupled
on space and time. This means that the interacting services do
not need to know each other and do not need to participate
on the interaction at the same time.

Publish/subscribe paradigm can be categorized in central-
ized and distributed model. In a centralized publish/subscribe,
publishers and subscribers are both attached to a message
broker which handles the implicit invocation of the services.
The IoT protocols such as CoAP, MQTT, AMQP follow the
centralized approach. In practice, publish/subscribe protocols
in large IoT systems may consist of multiple distributed
brokers such as MQTT brokers.

On the other side, other popular IoT protocols such as
Data Distribution Service (DDS) [4] rely on publish/subscribe
pattern to provide a completely decentralized architecture
with dynamic service discovery that automatically establishes
communication between matching peers. This model offers
scalability, increases reliability, and is suitable for efficient and
secure data sharing.

Considering that the focus of this paper is on checking
the trustworthiness and the legitimate operations of the asyn-
chronous interactions among services, recording events in the
order of their occurrence is very important. When an IoT
system consist of multiple brokers, the order of the events
handled on a single broker and across different distributed
brokers becomes fundamental. To preserve the generality of
our work, we assume that IoT devices employ distributed
publish/subscribe model.

B. Logical Clock Synchronization

Clock synchronization is an important procedure that allows
a large number of IoT devices to agree on the same time
reference. In general, the accuracy of a typical quartz-based
oscillator is affected by the manufacturing imprecision and
environmental conditions to which the clock is exposed,
in particular temperature [33]. These factors affect mostly
the accuracy of the clocks deployed on IoT devices due to
their low-cost design and their usual exposure to environment.
Since a global reference time is usually not available for
IoT devices and the local physical clocks are not accurate,
the clock synchronization among IoT devices is a challenging
issue.

To get around the physical clocks synchronization problem,
this paper proposes the usage of logical clocks, in particular,
vector clocks. The concept of logical clock (LC) was intro-
duced by Lamport [42] to produce “happens-before” relation
among distributed events, in which a → b denotes that the
event a happens before the event b. Here, a function LC

assigns an integer timestamp to events to satisfy the condition:
a → b ⇒ LC(a) < LC(b). In this way, the causally ordered
events are represented as a linearly ordered set of integers.
This approach does not order every pair of events, since there
can be distinct events with the same timestamp.

Since Lamport’s logical clock does not allow a precise
time-stamping of the messages, we use vector clocks. Vector
clocks (VC) [28], [43] enhance Lamport’s logical clock by
identifying precisely the events that are causally related. When
events are not causally related, they are concurrent. Overall,
a vector clock algorithm follows three basic steps:

• Each service Si maintains a vector clock V Ci , where the
value V Ci [i ] is initially assigned to zero.

• When a service Si sends a message, it first computes
V Ci [i ] = V Ci [i ] + 1, and then includes V Ci with the
message.

• Upon receiving a message with another vector clock
OV C , Si will set:
(1) V Ci [ j ] = max{V Ci [ j ], OV C[ j ]},∀ j ∈ [1..N]
(2) V Ci [i ] = V Ci [i ] + 1.

In our work, each service maintains a vector clock that is
updated during a remote attestation execution according to the
aforementioned algorithm.

V. SYSTEM MODEL

We consider an IoT distributed system, in which devices
adopt asynchronous communication mechanisms by follow-
ing a completely distributed publish/subscribe communication
pattern for the interaction among their services. Our system
model consists of the following entities:

• Devices (D): Each IoT device D provides many services.
Each service instance is identified by a unique id serv I D.
Devices adopt publish/subscribe communication pattern
to implement the interaction among services across the
network. One service can be both a publisher and a
subscriber.

• Verifier (Vr f ): The Verifier is an external trusted party
that verifies both the trustworthiness and the legiti-
mate operations of the services running on IoT devices.
We assume that Vr f has access to the binaries of each
service and has precomputed the legitimate hash values
for each genuine service. We also assume that Verifier
knows the legitimate interactions among services. This is
a realistic assumption since publish/subscribe protocols
generally provide an interface that handles the subscrip-
tion process.

• Network Operator (O P): O P guarantees the secure boot-
strap of the software deployed on each Di and the secure
key distribution among devices at the beginning of the
IoT system operation.

The Verifier performs the attestation in two steps: initial-
ization at time T0 and attestation at time T1, as shown
in Figure 3. During the initialization time, Vr f initiates the
attestation procedure to one (or more) services which will be
typically publishers. (Step 1©). Upon receiving the attestation
request, the publisher performs the local attestation process
and publishes the attestation result together with the data that
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Fig. 3. SARA system model.

it produces (Step 2© - 3©). Consequently, every subscriber
service which retrieves the published data will also perform
the attestation (Step 4©).

At attestation time, Vr f sends an attestation request to
one (or more) subscriber services (Step 5©) which will act
as Prover for the entire distributed IoT service. Each sub-
scriber will report to Vr f an attestation result that includes
the attestation result of all the previous services that were
directly or indirectly involved in triggering a given event
to which the subscriber was registered (Step 6©). Note that
the initialization and the attestation can be launched at any
services of the IoT devices. However, considering that the
functionality of a distributed IoT service typically flows from
sensors to actuators, the Verifier’s action is more effective
if the attestation procedure starts from publishers and gets
verified from subscribers.

VI. ADVERSARY MODEL AND SECURITY REQUIREMENTS

In this section we describe the adversary model and corre-
sponding security requirements.

A. Adversary Model

We consider the following possible actions of an Adv
against distributed IoT services. These adversarial actions are
also inline with the adversary model described in [7].

• Software adversary (Advsw): Adv can compromise the
program binary of an IoT service either remotely by
introducing malware (i.e., remote adversary), or by being
present physically near (i.e., local adversary). In both
the scenarios the Adv can also eavesdrop or control the
communications among services.

• Mobile adversary (Advmob): Adv is intelligent and able
to move between different devices within the IoT system
in order to avoid being detected.

• Replay attack: Any of the Adv listed above can also
launch replay attack, that is, Adv precomputes the results
of the attestation procedure, and reports to Vr f a previous
valid response which hides the attack.

Assumptions: Like in other remote attestation schemes
in the literature, we assume that Adv cannot compromise
hardware-protected memory. In addition, a Physical Adversary
(Advhw) that is capable of physically manipulating the services
and Denial of service (DoS) attacks are out of our current
scope. An adversary may also delay or refuse to publish
the result. However, if the Verifier expects that a particular
interaction happens in a predicted time interval, a long delayed
message will be noticed. Likewise, the Verifier can detect a
missing interaction in case the service does not publish the
data.

Device Trust Assumptions: Following common assumptions
reported in the literature, we assume the presence of three
trusted components that reside on a device:

• Read-Only Memory (ROM): Memory region in ROM
where is loaded the code of attestation protocol SARA
along with the attestation-related details.

• Secure Key Storage: Memory region that stores keys and
is read-accessed only by SARA. This memory region is
generally not updated during attestation.

• Secure writable memory: Memory region that can be
read-write accessed only by SARA and is used to securely
store the vector clock value.

The aforementioned memory regions are secure and can be
accessed only by authorized entities.

B. Security Requirements

Any asynchronous remote attestation protocol for IoT ser-
vices should satisfy the following security properties:

• Trustworthiness of services: The protocol should provide
secure evidence to guarantee the integrity of each indi-
vidual service that compose a asynchronous distributed
IoT system.

• Legitimate operations: The protocol should provide
timestamped evidence such as: the previous interactions,
the interactions timestamp, and the exchanged data.
In this way, the Verifier will be able to verify the legiti-
mate operation of the Prover as defined in Section III.

• Freshness: The protocol should be able to detect a com-
promised service that reports a precomputed value that
could hide an ongoing attack on the service.

VII. SARA: OUR PROPOSAL FOR ASYNCHRONOUS

REMOTE ATTESTATION

SARA consists of three main phases: (1) Deployment and
measurement, (2) Attestation, and (3) Verification. We present
the notation of SARA in Table I, and in the following,
we provide comprehensive details for each of the phases of
the protocol.

A. Deployment and Measurement

Deployment and measurement is an offline phase that is
performed to guarantee a secure setup of the devices on
an IoT system before the attestation procedure. A network
operator O P is responsible for deploying the devices in a
secure manner. Moreover, O P is responsible for the key
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TABLE I

NOTATION SUMMARY

management of the network and the installation of the secure
applications on the device. A trusted external party called
Verifier Vr f knows the installed version of the applications
on the devices and has access to the device binaries. During
the measurement, Vr f measures all the legitimate states of
each services running on a device. In addition, the Verifier
knows the services that are publishers and subscribers and the
legitimate interactions among them.

Key Management: We assume that Vr f uses an asymmetric
key-pair (SKV r f , PKV r f ) to communicate to each Prover. For
simplicity, we assume that each Prover uses an asymmetric
key-pair (SK Prv , PK Prv ) to communicate to the Verifier and
to other devices. In Section XI we describe the alternative key
management schemes that devices may potentially adopt to
communicate among themselves.

B. Attestation

Clock Synchronization: As we discussed in Section IV, it is
challenging to have the clock counter synchronized among
devices. Therefore, we adopt the concept of vector clock to
obtain a consistent view of time across all the services in an
IoT system. In the logical vector clock model, initially all
clocks are set to zero. From this moment onward, each time
a service sends a message, it increments its own logical clock
in the vector by one and then sends a copy of its own vector.
To preserve the generality of our protocol SARA, we use the
term timestamp to refer to the vector clock of a given service
at a given time. Note that in our approach timestamp is not
the taken from the physical clock, it is an array that represents
the vector clock. We assume that timestamp is running in a
protected memory and can be updated only by SARA.

Attestation: To describe the attestation protocol, we assume
that an asynchronous distributed IoT service is composed of
two services: a publisher P and a subscriber S. Each service
takes an input from another service or from the sensed data.
Figure 4 depicts SARA’s algorithm for attestation of asynchro-
nous distributed IoT services. At time T0, the Vr f initiates the
attestation protocol by sending an attestation challenge to P
(Step 1©). Upon receiving the challenge, P reads an input from
environment and registers the input to InputP . SARA uses
GH V to accumulate the attestation results among interacting
services. Since P is not triggered by any previous service,
SARA sets GH Vprev = 0.

Afterwards, P performs its own operation, registers
the output data to OutputP , and then starts attestation.
The attestation procedure (Step 2©) consists on computing
the checksum4 of P’s program binary which gets assigned
to L H VP . Then, P increments by one its timestampP

and computes τ = serv I D||timestampP ||L H VP||OutputP ||
InputP ||GH Vprev . This information will serve as a complete
evidence of service P for the Verifier and does not need to
be accessed by other services. Therefore, SARA encrypts this
evidence with PKV r f and assigns it to GH VP .

When P publishes a message (Step 3©), P computes a
message msgP = OutputP ||GH VP||timestampP and signs
this message with SK P . Once S gets the signed message from
P , S verifies the signature of the received message and stores
the input and timestamp sent by P . Next, S gets executed
on the received input and uses the received timestamp to
update its own timestamp timestampS following the vector
clock algorithm explained in Section IV-B. Next, S triggers
the attestation procedure (Step 4©), increments by one its
corresponding value of the vector clock and computes GH VS.
An abstract overview of this process is shown in Figure 5.

At time T1, Vr f will send an attestation request to S
(Step 5©). Upon verifying the request, Service S will send to
the Verifier the GH VS (Step 6©). Optionally, the Vr f can reg-
ister its subscription to S. In this case, when S completes the
attestation, S executes the function publish_to_veri f ier() in
order to send the final attestation result GH VS to Vr f .

C. Verification
In SARA, the verification starts when the Verifier retrieves

the attestation result GH VS from service S which acts as a
Prover (see the interaction at time T1 shown in Figure 4, where
service S is called subscriber). Along with the timestamped
attestation result of S, GH VS contains also the timestamped
attestation result of previous interacting services i.e., P .
In order to read the evidence GH VS, the Verifier uses its
own secret key SKVr f to decrypt the attestation result of
each service included in GH VS. Then, the Vr f uses the
timestamp of each attestation result to construct accurately the
interaction order among services P and S (i.e., P caused S).
Next, the Verifier verifies the checksum of each service P and
S that has been included in the evidence GH VS and checks
the exchanged data among these services.

4Note that the checksum can be replaced with the protocol that performs
data-memory attestation, however, it does not affect the generality of SARA.
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Fig. 4. The algorithm of SARA attestation protocol.

Fig. 5. Sara approach.

For instance, consider the service interactions in Figure 2
where the Verifier collects the final attestation result from

Service 5. In this scenario, the attestation result may con-
tain two different sequences of services: (1) Evidence 1:
Service 1 → Service 3 → Service 4 → Service 5, or (2)
Evidence 2: Service 1 → Service 2 → Service 3 →
Service 4 → Service 5 (see Figure 6). The Vr f uses the
timestamps to construct a graph with the accurate interaction
order of the services. By checking the checksum of each
service and the exchanged communication data between them,
the Vr f detects the compromised services.

Once a compromised service is detected, the Verifier will
identify the cases when the occurrence of a compromised
service has caused the malicious execution of other services.
In particular, the identification of services that directly or
indirectly have influenced the current state of the Prover relies
on the properties of the vector clock mechanism that represent
the casuality among events [28], [43]. According to the vector
clock implementation, each service has a vector of pairs ( j, k),
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Fig. 6. Overview of service interactions in publish/subscribe paradigm.

where j is the service’s id and k is number of the events the
service j produced. The Verifier claims that Service P has
influenced the state of Service S, if all the pairs of the vector
clock of P (i.e., V CP ) have a k value less or equal to the
corresponding k value in the vector clock of S (i.e., V CS),
and at least one k value is smaller:

V CP < V CS ⇔ ∀ j, V CP [ j ] ≤ V CS[ j ]
∧ ∃ j ′ | V CP [ j ′] < V CS[ j ′] (1)

where V CP [ j ] denotes the value of k in the pair ( j, k) of the
vector clock V CP .

For example, note the scenario in Figure 6 where the
Verifier retrieves the Evidence 2 from Service 5 and detects
a non-valid checksum reported by Service 2, associated with
the timestamp V C2 = [(1, 1), (2, 1)]. In this case, the Verifier
will identify those services “X” included in Evidence 2 (i.e.,
services 1, 2, 3, 4, and 5), for which V C2[1] ≤ V CX [1] ∧
V C2[2] ≤ V CX [2], and ∃ j ′ such that V C2[ j ′] < V CX [ j ′].
Note that when a pair ( j, k) is missing in the vector, the value
k is considered as 0. From Figure 6 we see that V C2[1] =
V C ′′

3 [1] ∧ V C2[2] = V C ′′
3 [2], while V C2[3] < V C ′′

3 [3].
Thus, in this case V C2 < V C ′′

3 (i.e., Service 2 caused
Service 3). Likewise, we notice that V C2 < V C ′′

4 and
V C2 < V C ′′

5 . Thus, from Evidence 2 the Verifier identifies
that the compromised Service 2 has influenced Service 3,
Service 4, and Service 5.

In addition, the vector clock allows the service interactions
to be represented as a direct acyclic graph (DAG). This derives
from the definition of vector clocks properties, in which the
values can only be incremented (see Section IV-B). At the
time of attestation, a malicious service might attempt to evade
the detection by sending precomputed legitimate data to other
services. In this case the “used” timestamp (i.e., vector clock)
is old and it will create a cycle in the final graph that the
Verifier constructs. Thus, DAG structure of vector clocks

Fig. 7. SARA FSM for Verifier.

allows the Verifier to detect a replay attack by identifying the
presence of a cycle in the DAG graph.

VIII. SARA INTERNAL WORKING MECHANISM

In this section, we provide a simplified explanation of the
attestation procedures of SARA (described in Section VII)
using finite-state machine (FSM) diagrams. In SARA, the main
entities that operate to perform attestation are the Vr f and the
device Di , which runs one or many services.

A. Interaction: SARA-Verifier

The Vr f in SARA performs the following main actions:
• Initialization: The Vr f initializes the attestation process

at a random time.
• Sending challenge: The Vr f sends the attestation chal-

lenge to any of the services in Di to initiate the
attestation.

• Report collection: The Vr f collects the attestation result
from any of the devices in the network at any ran-
dom point of time (i.e., after the initialization of the
attestation).

• Verify: The Vr f verifies the attestation result received
from the device(s) in the network.

B. Interaction: SARA-Prover

In SARA, the Prover has four main functions as follows:
• Receiving challenge: Prover(s) takes part in attestation

process once it receives the attestation challenge from
the Verifier.

• Perform attestation: Upon receiving the attestation chal-
lenge, the Prover performs attestation by computing the
checksum over the program binary.

• Global Hash Operation: The Prover computes
the global hash by including GH VP =
serv I D||timestampP ||L H VP||OutputP ||InputP ||
GH Vprev , where timestampP is the current timestamp,
L H VP is the hash of the program binary of the current
service P , Output is output of the current service,
InputP is the input of the current service and GH Vprev

is the previous hash value.
• Publish: The current service publishes the global hash.
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Fig. 8. SARA FSM for Prover.

IX. EVALUATION

We present our evaluation results in terms of runtime,
energy-consumption, and memory-consumption.

A. Simulation Environment

We evaluated SARA on realistic (random) networks using
the Instant Contiki environment, and in particular, the Cooja
simulator [5]. Cooja is a platform that can be used to emulate
networks of resource-constrained devices, communicating with
realistic protocols. We used Cooja to investigate the robustness
of SARA in a scenario where devices (i.e., Provers): (1) run
one service, (2) are resource-constrained, and (3) opportunis-
tically communicate using the IEEE 802.15.4 protocol. Even
though mobility is not our main focus, we modelled Prover’s
mobility by randomly deploying Provers over a simulated area
of 100 × 100 m2. Each Prover repeatedly selects a random
speed as well as random direction. The random movement of
Provers make the network dynamic and loosely connected.

We simulated the execution of SARA on a network of
Tmote Sky devices [1]. The Tmote sky is equipped with
a i16-bits 8 MHz MCU, 10 KB of RAM, and 48 KB
of non-volatile memory. Communications among services in
SARA are carried out over the IEEE 802.15.4 MAC layer
protocol and use 6LoWPAN as an adaptation layer (using
Contiki modules). This configuration is very popular in IoT
settings [9], [11], [15]. IEEE 802.15.4 is a wireless standard
that supports up to 250 Kbps data rate, 75 m coverage and
127 B frame size. Note that for our simulation we imple-
mented SHA-256, MD5 and AES in C language in ROM of
Tmote sky. Even though our simulation does not include the
trusted components, the required device trust assumptions (see
Section VI-A) can be implemented on real Tmote sky devices
by employing external hardware modules such as Flash stor-
age. The work in [48] discusses a similar implementation of
secure storage for a range of popular commercial off-the-shelf
(COTS) MCUs.

B. Runtime

SARA considers that communication among different
devices is asynchronous, thus, each device can receive or send

Fig. 9. Runtime of SARA, varying number of services.

Fig. 10. Runtime of SARA, varying number of services.

multiple messages concurrently. In order to provide an idea of
runtime of SARA, we present a simulated result of runtime
for 250 services which communicate asynchronously among
themselves. In our simulation environment of 250 services,
SARA takes ≈ 19 seconds to perform attestation for the whole
network. Figure 9 shows the runtime for SARA over a network
comprising an increasing number of services from 50 to 250.
The result proves that SARA is lightweight and does not
introduce significant overhead during the attestation.

Although, SARA’s runtime grows linearly, nevertheless,
SARA shows a remarkably manageable overhead for large
networks. This makes SARA a realistic remote attestation
technique for practical IoT applications.

In addition, we provide a runtime comparison of SARA over
a IoT network of 100 services by deploying these services on
skymote [1], ESB5 and Z1.6 We measured SARA’s overhead
for three different cryptographic functions: SHA-256, AES and
MD5 and present comparative runtime differences of skymote,
ESB and Z1 in Figure 10, Figure 11 and Figure 12. Consider-
ing the runtime for all three different cryptographic functions,
skymote performs better than ESB and Z1 mote even though
the differences among the three motes are negligible. The
simulation results show that SARA can be employed by any
sensor motes on real networks.

Figure 13 shows the Average Packet Delivery Ratio (APDR)
of SARA with increasing simulation time in a network
of 200 nodes. The messages considered for the simulations
include attestation messages along with usual network commu-
nication messages among nodes. For our simulation purpose

5http://contiki.sourceforge.net/docs/2.6/a01781.html
6https://zolertia.io
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Fig. 11. Runtime of SARA, varying number of services.

Fig. 12. Runtime of SARA, varying number of services.

Fig. 13. APDR with respect to increasing simulation time in the network.

we use “UDGM: constant loss for message communication”
(provided by Contiki platform) among nodes in SARA. The
APDR is shown w.r.t. SHA-256, AES and MD5 encryption
schemes. The performance among these schemes are not
substantially different from each other.

Figure 14 shows the runtime variation of SARA w.r.t.
increasing simulation area and cryptographic measures using
Tmote sky nodes. As expected, time required to perform attes-
tation over a large network will increase. The simulated exper-
iments show that 200 network devices (each device provides
one service) requires ≈ 25 to 30 seconds (for 200 × 200 m2)
to ≈ 58 seconds (for 600 × 600 m2) to perform attestation
for the entire network. The significantly higher time required
is due to distance related packet loss which also affects the
APDR of the network.

Fig. 14. Runtime of SARA, varying simulation area.

TABLE II

ENERGY CONSUMPTION WHILE SARA SIMULATION FOR SKY MOTES

C. Energy Consumption

We measured the energy consumption for SARA based on
the energy required to send and receive one byte of data and
the energy required to perform the cryptographic operation for
attestation process. Let Esend be the required energy to send a
byte, Erecv be the required energy to receive a byte, Egh be the
required energy to calculate global hash, Emac be the required
energy to sign the message, Emsg be the energy required to
communicate the attestation result, Eatt be the energy required
to compute checksum, and N be the total number of services
participating in the attestation. Then, the required energy to
send a message in SARA is:

E Di
send ≤ Emac + Egh + Emsg.

Similarly, the required energy for receiving messages in SARA
is:

E Di
recv ≤ Emac + Egh + Emsg.

In an asynchronous network that consists of N number of
services, the Vr f aims to attest a subset of services (At ). The
overall energy consumption for the subset of services attested
in SARA is given as follows:
E Di

SARA ≤ Eatt +Emac+Egh+E Di
send+(Emac+E Di

recv) ∗ (N ∩ At ).

We compute the energy consumption based on standard
Contiki measurement.7 The CPU energy consumption are
demonstrated in Table II.

Based on our simulation results, the energy consumption
of the nodes performing SARA is low and, SARA does not
introduce a significant overhead for the energy consumption of
the nodes that are performing attestation. Given that IoT nodes

7http://thingschat.blogspot.com
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are resource-constrained, the energy consumption results con-
firm that SARA is an appropriate attestation protocol for these
devices.

D. Memory Consumption

We simulated our experiment using Tmote sky which
has memory of 48k Flash + 1024k serial storage.8 In our
experimental setup, each Prover (Di ) needs to store at least
the (1) services running on the particular device; (2) key
pairs (ski and pki ); (3) Local hash for recording the result
at attestation time; (4) Global hash value. Thus, in our
experimental setting the storage cost for SARA in a random
device is 3.03 KB of storage for the services (i.e., running by
skymotes) and 93B for storing the local hash and global hash.
Nevertheless, the memory consumption can vary based on
different size of services and cryptographic choices. However,
Tmote sky node has considerable amount of memory which
can contributes to scale the operation based on future need.

X. SECURITY ANALYSIS

In this section, we informally discuss the security guarantees
of SARA in satisfying the security properties introduced
in Section VI. In an asynchronous distributed IoT service,
the goal of an Adv is to compromise and/or affect maliciously
one or more services and evade detection from the Vr f .
Our main objective is to prove that it is computationally
infeasible for an Adv to forge the attestation result and
persuade the Vr f .

Trustworthiness of Services: An Advsw can attempt
to manipulate remotely the program binary of Prover(s).
By infecting one service, the adversary can create a cascade
effect and maliciously affect other services. We assume that
the attestation code in SARA runs inside a hardware-protected
memory which cannot be modified by Advsw. Although a
Advsw can manipulate the program binary of any service,
the checksum performed by the attestation code will detect
the adversarial presence. The output of checksum is then
encrypted with the public key of the Vr f preventing other
interacting services to modify this output.

Legitimate Operations: Along with the checksum, SARA
stores the current timestamp, the input and the output of a
given service. Following the assumption that SARA is able to
securely intercept the input and output data, SARA securely
stores these results in ROM memory that is not modifiable
by a Advsw. At the end of the attestation procedure, the Vr f
will receive the attestation result that reports for each executed
service the checksum, the timestamp, and the exchanged
communication data. Considering that the timestamps are
stored in a secure writable memory that can be read-write
only by SARA and following the features of the vector clock
mechanisms that provide a precise causality between event
occurrence, the Verifier is able to identify all the compromised
services and their malicious impact over other services. Thus,
SARA guarantees the legitimate operations of asynchronous
distributed IoT service against a software adversary (Advsw).

8http://www.snm.ethz.ch/Projects/TmoteSky

In addition, SARA is able to detect a mobile adversary Advmob

that tries to evade detection by changing location. Since SARA
attests the program binary along with the communication data,
when the Advmob gets relocated across different the services,
the historical evidence will report the adversarial presence.

Freshness: Adv can launch a replay attack to evade
detection by sending precomputed valid attestation results.
However, in SARA all the services include timestamps main-
tained by the vector clock (as discussed in Section IV) with
their published output. This evidence allows the Vr f to con-
struct a graph using the timestamps included in the attestation
report. When all the service interactions occur in a legitimate
timestamp, the service interactions can be represented as a
directed acyclic graph (DAG) (as discussed in Section VII-C)
in which timestamps are the edges and services are the vertices
over the attestation report. The presence of a loop in the graph
will represent the usage of an old timestamp and will allow
the Vr f to detect the cases when the Adv launched a replay
attack.

XI. DISCUSSION

In SARA, each service stores a timestamped evidence,
encrypts this evidence and then sends it to other services.
SARA stores such evidence for each service interaction.

Bounding the Length of the Attestation Evidence: While
SARA allows the Verifier to accurately reconstruct historical
attestation evidence, the length of the attestation evidence
increases with the number of the services that are executed.
In real IoT scenarios, the de-facto communication protocols
(i.e., 6LoWPAN, ZigBee etc.) provide a maximum packet
length of 128 Bytes out of which 102 bytes can be used for
data transfer [24]. In a large network (e.g., with more than
N devices), this packet size will be insufficient to transmit
whole network attestation results. Thus, devices need to send
multiple packets, which will eventually increase their energy
consumption. One promising direction to bound the length of
the attestation evidence in SARA could be the possibility of
flagging some of the services in the IoT network as cluster-
heads. In this approach, the cluster-heads are pre-configured
with the maximum length of the evidence. The cluster-heads
check the cases when the length of the attestation results
exceeds the maximum predefined length-limit and then notify
the Verifier.

The Verifier communicates with the cluster-heads through
the publish/subscribe protocol. Specifically, upon initiating the
attestation procedure, the Verifier will register a subscription
to the cluster-heads. The Verifier chooses as cluster-heads the
services that are more likely to be called based on those
potential service interactions for a given attestation procedure.
Once the length exceeds a predefined length limit, the cluster-
heads will notify the Verifier. The cluster-heads publish the
attestation result to the Verifier according to the function
publish_to_veri f ier() as shown in Figure 4. The freshness
of the attestation result published from the cluster-heads is
guaranteed by the vector clock mechanism which gets incre-
mented by one when the function publish_to_veri f ier()
is getting executed. Upon receiving the attestation results
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from the cluster-heads, the Verifier can immediately decide
to re-initiate the attestation procedure starting from the
cluster-heads in order to check the rest of the services that
have not been attested yet. In this case, the attestation will
be initialized using the latest vector clocks published by the
cluster-heads, thus, at the end the Verifier will still be able to
reconstruct a complete history of the service interactions.

As an alternative way of bounding the length of the
attestation evidence and reducing the computational cost of
signing attestation results, SARA could adopt the usage of an
aggregate signature scheme [18], [34] which allows n different
signers to sign n original messages with a single compressed
signature. Considering that each service in SARA has a
unique serv I D, SARA can use a combination of an ID-based
cryptography [50] with an aggregate signature scheme, such as
identity-based aggregate signature scheme presented in [52].
The basic idea of this approach is that some of the IoT devices,
flagged as cluster-heads, will produce the aggregate signature
and send it to the Verifier along with the messages for the
attestation results generated by the other IoT devices.

Key Management: For simplicity we assumed that SARA
uses public/private key pair for every device in the network.
SARA could also employ the naive symmetric key sharing
approach among devices which reduces the operational cost
in terms of memory and computation with respect to the use
of public/private key structure. However, this approach does
not provide a secure communication among services since
an attacker that manages to extract one key will be able to
encrypt/decrypt all the exchanged messages over the network.

One potential alternative could be to use Attribute-based
Encryption (ABE) [16], [17]. ABE allows the data publishers
to specify the access policy by defining the attributes of
the entities that are allowed to access the data. In the pub-
lish/subscribe paradigm, this authentication mechanism can
ensure only the subscribers that match with the predefined
attributes can decrypt the received data.

XII. CONCLUSIONS & FUTURE WORK

This paper presents SARA, an efficient and effective remote
attestation protocol that performs attestation over a potentially
large number of resource-constrained IoT devices. The main
achievement of SARA is to overcome the shortcomings of
other attestation schemes by performing attestation of asyn-
chronous communication in IoT systems. We demonstrated
SARA’s performance through realistic simulation over the
Contiki platform in terms of runtime and energy consumption
of the device.

As a future work we will evaluate SARA’s performance
over a large network of intermittent connectivity, we will
also explore different ways to reduce the overhead of
resource-constrained IoT devices by adopting lightweight
cryptographic operations. We will explore and investigate the
application of distributed provenance compression schemes on
SARA approach. Another main area of our future work will be
minimizing the assumptions regarding adversarial capabilities,
reducing the code-size inside protective memory region and
the implementation of SARA over a real IoT system. Another

future direction will be making SARA immune to attacks like
control-flow attack or data-attack.
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