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Abstract—This paper proposes a novel mechanism
for swarm attestation, i.e., the remote attestation of
a multitude of interconnected devices, also called a
swarm of devices. Classical remote attestation proto-
cols work with one prover and one verifier. Swarm
attestation protocols assume that the devices in the
swarm act both as verifier and prover in order to
attest the software integrity of all the devices to a
root verifier, typically in a spanning-tree topology.
We propose “SHeLA: Scalable Heterogeneous Layered
Attestation”, a novel remote attestation technique for
swarms. Our approach consists of introducing an addi-
tional edge layer in between the root verifier and the
swarm devices. The edge layer consists of geographi-
cally spread devices with a larger computational power
and storage capacity than the swarm devices. The main
challenges we address are related to the scalability of
the swarm, the availability or visibility of the nodes
(especially when they are mobile), the heterogeneity of
the devices with respect to the wireless communication
protocol and interface, and the granularity of the at-
testation in terms of detecting the sanity of individual
swarm devices. We build a proof-of-concept network
that allows us to evaluate the computational delay and
the resource overhead of the edge and swarm devices,
and to perform a thorough security analysis.

Index Terms—FPGA, Configurable Hardware, Re-
mote Attestation, Swarm attestation, Security and Pri-
vacy, IoT.

I. Introduction
The exponential proliferation of low-cost embedded de-

vices or so-called internet-of-things (IoT) devices [1] in
our day-to-day lives poses challenges such as: scalability,
data security and privacy, maintenance, and network in-
tegrity. Thanks to recent technology advancements, IoT
devices are capable of working as a group and of au-
tonomous decision making. Consequently, these devices
are also employed to perform safety-critical operations in
different fields (e.g., medical, nuclear, military, and smart-
vehicular applications). Despite the huge success of IoT
applications, they also introduce major security issues.
Incidents like Stuxnet [2], Distributed Denial of Service
(DDoS) attacks [3], and the Jeep-Cherokee incident [4]
fuel security and privacy concerns. As these devices often
act autonomously, any security loopholes may have a
catastrophic impact in terms of data loss, financial loss or
even physical fatality [1]. Unfortunately, the competition
for producing devices at the lowest cost and the shortest
time to market leads to software and hardware bugs that
can be exploited by malicious entities.

An effective mechanism to identify a malicious node
in a network, is remote attestation (RA). It is basically
an interactive on-demand challenge-response protocol be-
tween a “trusted” entity (i.e., a verifier) and a potentially
“untrusted” node (i.e., a prover). The goal of RA is for
the verifier to check the integrity of the software on the
prover’s device. When many potentially untrusted nodes
are grouped in a swarm of interconnected devices, it is not
efficient to establish a connection between each node and
the verifier directly. Swarm attestation offers a solution by
using the nodes both as verifier and as prover such that
they can attest their neighbors. By connecting all nodes
in a tree topology, the root verifier can check the sanity of
the entire swarm.

In this paper, we introduce an alternative approach
that consists of adding a layer of geographically spread
edge devices in between the root verifier and the swarm
nodes. Note that this geographical spread can be on a local
scale (e.g. a factory floor) or wide scale (e.g. intercon-
tinental). The edge devices have a larger computational
power and storage capacity than the swarm devices. Each
higher-end edge device attests the sanity of the swarm
devices within its reach and exchanges information on
the attestation with the other edge devices through a
dedicated synchronization mechanism. Consequently, our
approach introduces redundancy, reducing the risk of a
mobile device being temporarily unavailable or invisible
to other devices when its position in the swarm changes.
Moreover, we assume that the higher computational power
of the edge devices allows them to deal with heterogeneous
swarm nodes, i.e. nodes using different wireless communi-
cation protocols. Further, our approach enables the root
verifier to gain information on the sanity of the individual
swarm nodes, as opposed to traditional swarm attestation
techniques that can only verify the sanity of the swarm
as a whole. Finally, our approach is scalable in two ways.
One way is to extend the edge layer with additional higher-
end edge devices. The other way is to add additional edge
layers to the topology, in which each layer attests the
devices in the lower-level layer in the hierarchy.

We call our solution “SHeLA: Scalable Heterogeneous
Layered Attestation”. Our contributions are the following:
• To the best of our knowledge, SHeLA is the first

remote attestation protocol for large swarms using
distributed edge computing. SHeLA can effectively
detect malicious provers in the network and efficiently
manage large swarms.
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• The SHeLA approach retains its generality regardless
of the one-to-one attestation scheme implemented
between the edge devices and the swarm nodes. In
this regard, it follows the approach of existing swarm
attestation solutions, which also operate irrespective
of the one-to-one attestation mechanisms between the
swarm nodes.

• The design principle of SHeLA is scalable in terms of
edge devices (hence the ‘S’ for ‘Scalable’ in the SHeLA
acronym) and edge layers (hence the ‘L’ for ‘Layered’
in the SHeLA acronym). Consequently, SHeLA oper-
ates on large swarms in a cost-effective manner. The
edge devices synchronize among themselves in regular
intervals. Hence, the root verifier or network owner
can achieve a full network view from any one of the
edge devices at any time.

• The edge devices in the SHeLA mechanism are ca-
pable of communicating with swarm nodes using dif-
ferent wireless communication protocols. This way, a
heterogeneous swarm network is supported (hence the
‘He’ for ‘Heterogeneous’ in the SHeLA acronym).

• Unlike most of the RA schemes [5], [6], [7], SHeLA
supports device mobility. Through built-in redun-
dancy, it allows the swarm nodes to be temporarily
unavailable or invisible to one or more edge devices.
Therefore, even during attestation, the prover does
not have to be static.

• SHeLA allows the root verifier to obtain detailed
information on the sanity of the individual devices
in the swarm. This is different from most existing
schemes, in which the granularity of the attestation is
limited to a binary outcome on the sanity of the entire
swarm. SHeLA satisfies all the properties of Quality of
Swarm Attestation (QoSA), as proposed by Carpent
et al. in [7].

• We build and evaluate a proof-of-concept implemen-
tation with field-programmable gate arrays (FPGAs)
in the edge layer and ARM processors in the swarm
nodes.

The paper is organized as follows. Section II discusses
related work on swarm attestation. In Section III, the sys-
tem assumptions and adversary model are introduced. Sec-
tion IV explains our solution “SHeLA”, and Section V de-
scribes the proof-of-concept implementation. Subsequently
this implementation is evaluated in Section VI and a
security analysis is presented in Section VII. Section VIII
elaborates on the limitations of SHeLA and discusses the
future work. Finally, we conclude the paper in Section IX.

II. Related Work
RA is broadly classified into three main categories:

(1) software-based attestation schemes (e.g., [8], [9]),
(2) hardware-based attestation schemes (e.g., [10]), and
(3) hybrid (i.e., software/hardware co-design) attestation
schemes (e.g., [11], [12], [13], [14]). All these techniques
work for a one-to-one setting, with one prover and one
verifier, and are therefore hard to scale. Nevertheless, in

a realistic setting, scalability is a must due to the over-
whelming growth and size of current IoT networks [15].
Additionally, IoT devices often collaborate in swarms for
specific tasks, and existing one-to-one RA schemes fail to
attest the whole swarm in an acceptable time frame.

Although one-to-one RA schemes have been studied for
some time already, swarm attestation is a relatively new
concept. The goal of swarm attestation is to prove the
sanity of the whole swarm to a root verifier while avoiding
the one-to-one RA of each swarm node. In this section,
we will discuss different swarm attestation techniques and
their advantages along with disadvantages.

Asokan et al. proposed the first swarm attestation tech-
nique, known as scalable embedded device attestation or
SEDA [5], in 2015. The idea is that the whole network
forms an overlay of spanning trees in which every device
is attested by its parent and the report is aggregated
alongside. At the end of the attestation, the verifier is
notified about the health of the whole network through a
report in a binary form: 0 in case there is a malicious device
in the swarm, and 1 in case there are no malicious devices
in the swarm. Although this technique scales well and
provides an efficient runtime, it is assumed that during the
attestation process, the whole network is connected and
there are no nodes unavailable due to mobility. Further,
the authors mention that SEDA can be extended to allow
to report the identity of the individual malicious device(s)
to the verifier. We apply this idea in the proposed SHeLA
mechanism.

In [6], Ambrosin et al. present SANA, a scalable re-
mote attestation scheme for low-end embedded devices.
Unlike [5], in SANA minimal hardware protection support
(e.g., trusted execution environment or TEE) for all de-
vices are not required and provide device details. SANA
relies on an publicly verifiable Optimistic Aggregation Sig-
nature (OAS) scheme. Although the OAS scheme helps to
identify the details of each device and provides better ver-
ifiabilty and resiliency against a strong attacker, it incurs
an overwhelming computation overhead and performance
degradation in low-end embedded devices. Moreover, while
SANA provides better security in comparison to SEDA, it
still needs full connectivity during the device attestation
phase.

Ibrahim et al. propose DARPA [16], in which the essence
is to collaboratively detect when a device is being com-
promised by an adversary. This is done by monitoring the
presence of a device in the network and assuming that
the temporary absence is the consequence of an attack.
DARPA improves SEDA [5] with respect to resilience
against a strong adversary, but also inherits SEDA’s lim-
itation in terms of assuming full network connectivity
during device attestation and in terms of not providing
an easy mechanism to identify which devices are infected.

In [7], Carpent et al. propose a lightweight swarm
attestation technique (LISA). LISA consists of two dif-
ferent protocols: LISAα and LISAs. It improves SEDA [5]
in terms of scalability and resilience against strong ad-
versaries. Apart from introducing two distinct protocols,
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LISA also coins the term Quality of Swarm Attestation
(QoSA), which helps to compare different RA protocols
with respect to the granularity of the attestation report,
i.e. the level to which the sanity of the individual devices is
reported to the verifier. LISA leverages the same assump-
tions of full network connectivity during the attestation
phase, thus limiting the possibility of device mobility
during attestation.

More recently, in 2017, Ibrahim et al. proposed
SeED [17]. The essence of this idea is that the attestation
is initiated by the devices rather than by the verifier.
The attestation time is controlled by a pseudo-random
number generator (PRNG), which is secured by a memory
protection unit in every device. SeED provides a better
strategy to counter DoS attacks and requires less energy
to operate compared to other RA schemes. Nevertheless,
SeED is based on SEDA [5] for collective attestation, thus
inheriting SEDA’s limitations.

Unfortunately, none of the aforementioned attestation
techniques support device mobility during the attestation
phase as full network connectivity is a must. However,
device mobility is indispensable in real life scenarios (e.g.,
self-driving cars, drones). To address this unique challenge,
Ambrosin et al. proposed practical attestation for dynamic
swarms (PADS) [18]. The authors fuse the idea of self-
attestation (i.e.,[17]) and sensor technology. The main idea
of PADS is that devices will perform self-attestation and
share their “knowledge” about the network through mu-
tual attestation. Unlike earlier attestation schemes, PADS
does not rely on a spanning tree overlay for the efficient
collection of attestation reports. In PADS, devices will
share their respective knowledge with each other and apply
a “minimum-consensus” mechanism between stored and
received data. The authors introduce the term “coverage”
to indicate how many devices have undergone attestation.
PADS improves the state of the art by enabling device mo-
bility during attestation, but it cannot guarantee a 100%
coverage - the coverage grows, however, with an increasing
number of interactions between the swarm devices.

In summary, the SHeLA mechanism, proposed in the pa-
per at hand, improves existing swarm attestation schemes
in terms of scalability, availability, heterogeneity and
QoSA.

III. System Assumptions and Adversary Model
A. System Model and Entities

There are three main categories of entities in the SHeLA
system, as depicted in the topology in Figure 1.
• the root verifier (Vrf): this is the owner of the network

that runs the attestation. The root verifier has unlim-
ited computational power and communicates with the
edge verifiers via a wired or wireless channel.

• the edge verifiers (EVi): these are higher-end devices
with a larger computational power and storage ca-
pacity than the swarm nodes. They possess wireless
interfaces that allow them to communicate with all
the devices in (part of) the swarm. A connection with
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Fig. 1. The SHeLA topology.

the root verifier can be either through a wireless or
wired interface. In any case, the interface is assumed
to be highly reliable, such that each edge verifier has a
permanent connection to the root verifier. In the un-
likely event of an edge verifier being unavailable, this
will be reflected in the collective attestation response.
Further, we assume that the high-end edge verifiers
are trusted entities with secure hardware support
that allows them to be attested by the root verifier.
Moreover, edge verifiers are expected to attest each
other prior to communication. This is feasible given
their more powerful nature. This mutual attestation
falls out of the scope of this work.

• the swarm nodes, i.e. the provers (Prvi): these are
low-end IoT devices that communicate using a specific
wireless communication protocol, e.g. Zigbee, Blue-
tooth or WiFi. They can be static or mobile. We
assume that the swarm nodes have minimal (hard-
ware) support [11], [12] to enable a secure one-to-
one attestation. This is in line with other swarm
attestation schemes.

The edge verifiers perform one-to-one attestations of the
provers; SHeLA allows any one-to-one RA scheme to be
used. A prover is potentially untrusted and is registered
with one edge verifier when it enters the network. Nev-
ertheless, a prover can be a mobile device that is tem-
porarily unavailable to the edge verifier that registered its
participation in the swarm. When a swarm node is mobile
and moves between the coverage of the edge verifiers,
redundancy is introduced through the consecutive one-
to-one RA of the swarm node by different edge verifiers.
By geographically spreading the edge verifiers, the entire
swarm network is covered. In case a swarm node is unavail-
able to all edge verifiers, the edge verifier that performed
the last successful attestation keeps track of the timestamp
of that attestation. It is up to the root verifier’s policy to
take action when a swarm node is unavailable for a longer
time.
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The edge verifiers keep track of the integrity of the
provers that they attest. A dedicated synchronization
mechanism between the edge verifiers guarantees that each
edge device has an image of the sanity of the entire swarm.
Consequently, the root verifier can connect to any of the
edge verifiers to request the status of the entire network.
We assume that the edge verifiers have sufficient storage
to keep track of the attestation status of each swarm node,
ensuring the highest level of QoSA, as defined in [7].

In this work, we assume that the edge verifiers are
trusted entities. However, in a realistic setting, the edge
devices might be accessible to potential adversaries. In
that case, traditional one-to-one RA can be enabled be-
tween the root verifier and the edge devices in addition to
the presented SHeLA scheme.

The system is scalable in the sense that edge verifiers
can easily be added as well as additional edge layers. When
there is more than one edge layer in the SHeLA topology,
each edge layer resides on a distinct hierarchical level,
where each level receives information from and attests the
lower-level layer in the hierarchy. Only the lowest edge
layer is in direct contact with the swarm nodes.

Note that our goal is to make sure that the root verifier
can successfully monitor and attest the nodes in the
swarm. Securing the communication channels between the
different entities is not discussed in this work, but this
means to no end that this should not be done. Moreover,
we encourage proper encryption and authentication mech-
anisms to be used, but these fall out of scope of this work.

B. Adversary Model
The main objective of an adversary is to incur damage

or interrupt network operations without being detected
during attestation. In line with other swarm attestation
schemes [5], [6], [7], [17], [18], we consider software-only
adversaries. We follow the classification proposed by Abera
et al. [19] to categorize the capabilities of our presumed
adversaries:
• Remote adversary: capable of remotely contaminating

one or more devices in a network with malicious
software;

• Local adversary: physically present in the vicinity of
the device(s) and thus capable of eavesdropping and
mounting communication attacks.

We do not consider physical adversaries, i.e. adversaries
that are even closer to the device(s) than local adversaries;
they are capable of mounting side-channel attacks or cap-
turing the device(s) in order to retrieve information in a
non-intrusive or intrusive manner. Additionally, network-
wide attacks like denial-of-service (DoS) attacks are out-
side of our current scope.

C. Security Goals
In this section, we list the goals that we aim to achieve

through the SHeLA mechanism. Note that some of these
goals are also reached in existing swarm attestation pro-
tocols [5], [6], [20], [21].

• Successful attestation: the main objective of SHeLA
is to allow the root verifier to attest all the nodes in
the swarm network.

• Freshness: an important aspect is the freshness of the
attestation process in order to prevent replay attacks.

• Information on the sanity of the individual swarm
nodes: unlike most existing attestation schemes, in
SHeLA, the root verifier should have the ability to
find out which swarm node(s) cause(s) the overall
attestation to fail.

• Parallel execution: SHeLA should support the parallel
attestation of several swarm nodes, thus making it
suitable for adoption in large-scale networks thanks to
techniques that are more efficient than the individual
attestation of the swarm nodes. Moreover, the request
of the root verifier to get an attestation report based
on the current status of the entire swarm should be
fulfilled in parallel to the ongoing one-to-one attesta-
tions in the swarm.

IV. Our Solution
In order to obtain the layered topology, as already

briefly introduced in Sect. III-A, each edge verifier needs
to (1) perform one-to-one attestation of the swarm nodes
within its reach, (2) synchronize with the other edge
verifiers, and (3) send attestation reports on the sanity
of the whole network to the root verifier. Both the at-
testation results of the individual swarm nodes and the
synchronization data are stored in tables. The structure
of these tables is explained in Section IV-A. Further,
we explain the attestation protocol, which consists of an
offline setup phase and an online attestation phase. In
the online phase, four types of actions are performed by
each edge verifier: (1) the one-to-one attestation of the
swarm nodes, (2) the storage of attestation information
on swarm nodes that are (temporarily) out of reach, but
that were originally registered with the considered edge
verifier, (3) the exchange of information with other edge
verifiers on the attestation results of all swarm nodes (i.e.
synchronization), and (4) the reporting on the status of
the whole network to the root verifier.

A. Tables
SHeLA is built using four tables. One table is stored at

the root verifier (TVrf), and three tables are stored on each
edge verifier: TEV,R, TEV,G and TEV,E, where R, G, and E stand
for registration, guest and edge, respectively, as explained
in the following paragraphs. The columns in these tables
are summarized in Table I. The content of the tables can
be summarized as followed:
• TVrf stores information on the swarm nodes and the

edge verifiers.
• In the offline bootstrapping phase, each swarm node

is registered on one edge verifier by the root verifier
before it enters the network. The information on the
swarm nodes that belongs to a specific edge device is
stored in that device’s registration table TEV,R.
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• In the online attestation phase, it is possible that
swarm nodes are temporarily unavailable to the edge
verifier in which they are registered. That is why
SHeLA enables the attestation of swarm nodes by
another edge device, which stores information on
these nodes in its guest table TEV,G.

• To make sure that the root verifier can check the san-
ity of the entire swarm through any of the edge veri-
fiers, a synchronization mechanism is applied between
the edge devices. Information on all edge verifiers is
stored in each edge verifier in the edge table TEV,E.

The exact use of these fields in the offline bootstrapping
phase and the online attestation phase is explained in
Section IV-B. The final column in Table I indicates the
contribution of the different fields to two hash values
(HR and HE). The exact use of these values is covered in
Section IV-B.

TABLE I
The fields in tables TVrf, TEV,R, TEV,G, and TEV,E, where HE is the
hash value of the TEV,E table that the edge verifier sends to

the root verifier.

TVrf

IDPrv
The identifier of each Prvi in the
swarm ∈ HR

flag A value that reflects the current and
past attestation results of each Prvi

∈ HR

HPrv
The hash value of the expected
internal state of each Prvi

IDEV The identifier of each EVi ∈ HE

TEV,R

IDPrv
The identifier of each Prvi
registered with this edge verifier ∈ HR

flag A value that reflects the current and
past attestation results of each Prvi

∈ HR

TS The timestamp in which the table
was most recently updated ∈ HR

HPrv
The hash value of the expected
internal state of each Prvi

TEV,G

IDPrv

The identifier of each Prvi attested in this
edge verifier but registered with another
edge verifier

H′
Prv

The received response of each Prvi
attested by this edge verifier

offset The time offset within TS when the most
recent attestation of each Prvi took place

IDEV
The identifier of the edge verifier in which
Prvi was initially registered

TEV,E
IDEV The identifier of all edge verifiers ∈ HE

HR
The hash value of a combination of
selected fields in the TEV,R table ∈ HE

B. Attestation Protocol
SHeLA has two main phases: (1) the offline phase, in

which the provers and edge verifiers are introduced in
the network and bootstrapped with the necessary data
to enable the attestation process; (2) the online phase,

in which the attestation between the provers and the
edge verifiers, and the synchronization between the edge
verifiers take place. We describe the different steps in these
phases.

1) Offline phase:
Edge verifier enrollment: When a new edge verifier EVi

is added to the network, the root verifier registers this edge
verifier with every other edge verifier. Each of those edge
verifiers adds a line to its TEV,E table with the new EVi.

Device enrollment: When a new swarm node Prvi is
added to the network, the root verifier registers this device
with one specific EVi. Only this EVi will add a line in its
TEV,R table and stores the relevant data. This means that
the root verifier assumes an initial swarm node connectiv-
ity to a specific edge device. If it turns out that the swarm
node is not within reach of this edge device, the node will
be associated with another edge device in the online phase.
Furthermore, the reason that the device enrollment is done
by the root verifier, is to make sure that the root verifier
can store the initial view of the whole network together
with the associated hash values. In order to reduce the
memory usage of the tables, each swarm node is initially
only registered with one edge verifier.

2) Online phase:
Device migration: If a swarm node migrates within the

reach of an edge verifier different from the one that it was
registered with, it announces itself with that edge verifier.
The receiving edge verifier will add a line to its TEV,G table
and stores the relevant data. During device migration,
there might be a small time interval in which a device is at-
tested by more than one edge verifier. This specific corner
case is not a problem, since the synchronization protocol
between the edge verifiers has a built-in mechanism to deal
with this redundancy.

Swarm node attestation: Initiated by the edge verifier,
a challenge-response attestation is done on each Prvi. In
the case that Prvi was registered with this edge verifier, it
verifies the response and updates the flag and the TS in
its TEV,R table for the targeted node Prvi. In case Prvi has
migrated to the edge verifier, the response is stored but
not verified, and the received hash value H′Prv, the offset
value are updated in the TEV,G table. The timestamp TS
indicates the time interval in which the attestation was
done. The offset value reflects the time offset within this
interval. The exact use of TS and offset is further detailed
in Section IV-D.

Edge verifier update: The goal of an edge verifier update
is to provide the edge verifier with attestation information
of swarm nodes that were originally registered with the
considered edge verifier, but that are currently outside of
the wireless coverage of the edge verifier. Edge verifiers
update their TEV,E table with information from other edge
verifiers. Each edge verifier groups the entries in the TEV,G
table that belong to a specific other edge verifier and sends
them to that edge verifier. The receiving edge verifier then
verifies the incoming data as if they were responses from
locally executed device attestations and updates its own
TEV,R.
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Edge verifier synchronization: The goal of edge verifier
synchronization is to make sure that each edge verifier gets
updated with information on the whole network. This is
done with periodic intervals (determined by the TS value).
During edge verifier synchronization, each edge verifier
calculates the hash value HR of selected content in its TEV,R
table, as indicated in Table I: HR = H(IDPrvj || flagj || TS).
The resulting hash HR is then sent to every other edge
verifier, who uses the incoming HR to update its TEV,E table;
each edge verifier also updates its EVi table with its own
HR value. In summary, the result of the synchronization
step is that the TEV,E table of each edge verifier contains
information on the HR of all edge verifiers.

Network attestation: When the root verifier wants to
attest the entire network, it makes a request to any edge
verifier, which hashes its complete TEV,E table into HE
and sends back this value to the root verifier. The root
verifier can calculate the same hash value and compare the
expected value with the received value. When the check is
successful, the root verifier concludes that the swarm is
in the expected state. When there is no match between
the expected and the received hash value, the root verifier
can track down which edge verifier has an infected swarm
node, or which individual swarm node was infected. This
is explained in more detail in Section IV-C.

Figure 2 illustrates the content of the four tables (TVrf at
the root verifier; TEV,R, TEV,G and TEV,E in each edge verifier)
for an arbitrary network that consists of two edge verifiers
(EV0 and EV1), which each have two devices registered
(Prv0 and Prv1 are registered with EV0; Prv2 and Prv3 are
registered with EV1). To illustrate the use of TEV,G, Figure 2
assumes that Prv2 moved within the reach of EV0, while it
was initially registered in EV1.

The figure shows that the TVrf table at the root verifier
contains information on all four swarm nodes. Each edge
verifier has two lines in its TEV,R table, one for each swarm
node that it initially registered. The TEV,G table of EV0
stores the attestation result of Prv2. This result is sent
to the TEV,R table of EV0 during the edge verifier update
step, which happens in each time interval when the TEV,G
table is not empty. The TEV,G table of EV1 remains empty
because Prv0 and Prv1 did not migrate within the reach of
EV1. After edge verifier synchronization, both TEV,E tables
contain exactly the same information; the synchronization
process is indicated in the figure with two full and two
dashed single-ended arrows.

C. Granularity depth
We define the granularity depth as the level to which the

attestation information is refined by the root verifier. At-
testing the entire network as described in Section IV-B, re-
sults in a binary result: either the network is “as expected”
or it is not. This, we define as granularity depth 0 (GD0).
The root verifier assesses the sanity of the swarm network
by comparing the received hash value HE,i from any of the
edge verifiers, with a hash value calculated by the root

verifier. The root verifier calculates the value as follows:
for each EVi: HR,i = H( ∀j(IDPrvj || flagj || TS) )
and once: HE = H( ∀j (IDEV,j || HR,j) ).

In case the comparison of the calculated and received
HE value results in an inequality, the root verifier can
request the HR of a specific edge verifier. By comparing this
value with the expected HR value, the sub-network which
produces the issue, can be determined. This, we define as
granularity depth 1 (GD1).

One additional level of granularity depth (GD2) can be
achieved by requesting the hash value of each line in the
TEV,R table. This allows the root verifier to narrow down
the issue to a single swarm node.

D. Time and order
SHeLA uses a timestamp TS and an offset value to

add the concepts of time and order in the one-to-one
attestations between the edge verifiers and the swarm
nodes. TS is a nonce (reflecting the absolute time) that
is known throughout the whole network. The frequency
with which TS is updated should be chosen sufficiently
small to reduce the time that the edge verifiers are out
of sync. In the period between two TS updates, multiple
swarm node attestations, edge verifier updates and edge
verifier synchronizations can occur. To distinguish between
consecutive actions, an offset value is used.

As stated above, an edge verifier can decide when to ini-
tiate attestations, updates and synchronizations. When an
edge verifier performs the attestation of a migrated swarm
node, it stores the offset value in its TEV,G table together
with the attestation response. Figure 3 illustrates the use
of TS and offset with an example in which TS reflects a
day and an hour (e.g. 20190101 0900 stands for January
1st 2019, at 9 am), and the offset reflects the number of
seconds that have passed in this TS (e.g. 1 for 09:00:01,
or 120 for 09:02:00). This example illustrates that a TS is
unique and easily synchronized between each EV and the
Vrf. The offset is a value that is unique in combination
with the TS. The process of edge verifier synchronization
is done at the start of every TS interval. After that, swarm
node attestations and edge verifier updates are performed,
and the corresponding offset values are stored in the
tables. The TS value, i.e. the synchronization frequency,
is determined by the application.

V. Proof-of-concept implementation
A. Setup

As a proof of the proposed SHeLA concept, an imple-
mentation of the whole system is made. The edge veri-
fiers are implemented on field-programmable gate arrays
(FPGAs). The use of FPGAs for the implementation of
the edge verifiers is justified by the assumption that the
edge verifiers should have hardware assistance and should
be capable of communicating to a heterogeneous swarm
network. Furthermore, FPGAs are capable of processing
information in parallel from many communication inter-
faces. This way, the different processes in Sect. IV-B2
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Fig. 2. The four SHeLA tables in an arbitrary network
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Fig. 3. Graphical representation of TS and offset on a timeline, with
example values and example events.

can be executed in parallel. In the lab setup, depicted in
Figure 4, two Xilinx ML605 boards [22] are configured as
EVx and EVy; and one swarm node is implemented on a
simpleLink microcontroller development kit [23]. A larger
number of swarm nodes are emulated in Python using
software that runs on a laptop. Finally, another laptop acts
as the root verifier Vrf. For this proof-of-concept setup, the
laptops and FPGAs are interconnected through a wired
network switch, while the microcontroller participates in
the network using a WiFi connection.

The software on the microcontroller is developed in
C and is compiled using the ARM compiler of Texas
Instruments (version 18.1.3), while the software on both
laptops is written in Python. The configurations of the

EVx EVy

E
D

G
E

SW
A

R
M

R
O

O
T

V
E

R
IF

IE
R

Prv0 - Prvm-1

Vrf

Fig. 4. The proof-of-concept setup.

Virtex-6 FPGAs are generated with Xilinx ISE Design
Suite (version 14.7).

B. FPGA architecture
The top-level FPGA architecture is shown in Figure 5.

It is a system-on-chip FPGA architecture built around
Xilinx’ softcore MicroBlaze processor. This processor is
supported by a 64kBytes instruction and data memory
and is attached to an AXI4 bus. Two custom peripherals
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are attached to this bus: (1) a co-processor that is able
to execute the SHA256 [24] hashing algorithm and per-
form clock-cycle precise time measurements, and (2) an
interface to the network core. The processor and hardware
are separate systems because they operate on different
clock speeds. The processor uses a 100 MHz clock, while
the hardware system uses a 125 MHz clock to support a
Gigabit-speed network.

MicroBlaze

BRAM

I             D

debug uart

clock
generator

processor
synchronous

reset

FIFO
in

FIFO
out

pr
oc

es
so

r 
sy

st
em

RX
FIFO

TX
FIFO

ha
rd

w
ar

e 
sy

st
em

SHA256 CTR

network
interface frame filter

Fig. 5. The architecture on the FPGA.

The management of the three tables (TEV,R, TEV,G, and
TEV,E) is done in software on the MicroBlaze processor. To
facilitate the flexibility of the SHeLA protocol, the tables
are stored in the dynamic memory (heap) of the processor.

The software that runs on the MicroBlaze handles in-
coming requests from the network using a custom UDP/IP
protocol. The requests originate from other FPGAs (for
edge verifier updates or synchronizations) or from the root
verifier (for attestation requests and for adding swarm
nodes to the network).

C. Swarm nodes
The microcontroller used to implement one swarm node,

is a development kit with a MSP432P401R MCU which
features a 32-Bit ARM Cortex-M4F With Precision ADC,
256KB Flash and 64KB RAM and it runs on a frequency
up to 48 MHz. Furthermore, the CC3120 network proces-
sor [25] is added to enable the WiFi connection.

The software that runs on this device handles incoming
challenges from the FPGA. The one-to-one attestation in
the proof-of-concept setup is done as follows: the times-
tamp TS and the offset value are sent to the swarm node
as a challenge, after which the swarm node responds with
the hash value of the challenge, concatenated with the
hash value of the content of the internal program memory.
We assume that the swarm node has minimal (hardware)
support to make sure that this process cannot be tampered

with. For evaluation purposes, we also foresee the situation
in which malicious code is added to the swarm node. To
allow the validation of a larger network, more swarm nodes
are emulated on a laptop.

VI. Evaluation
In this section, we discuss the performance evaluation

of SHeLA in terms of resources, runtime and memory con-
sumption, based on our proof-of-concept implementation
described in Section V.

A. Resources
Table II summarizes the resource requirements of the

implementation. It also provides the relative resource us-
age in the most recent family of Xilinx FPGAs, namely
the 7-series. The smallest device in this family that fits
the proof-of-concept implementation is the Artix-7 15T,
which is the second smallest family member; and (one of)
the largest FPGA(s) is the Virtex-7 X1140T. The number
of slices and DSP blocks is almost independent of the size
of the SHeLA tables. Most of the memory usage (BRAM)
in the proof-of-concept implementation (16 out of 22) is
taken by the 64-kByte instruction and data memory of
the processor. 24 kBytes of BRAM (6 out of 22 blocks)
are occupied by the networking hardware. The remaining
BRAM available on the FPGA can be used for the SHeLA
tables. The exact size depends on the number of edge
verifiers and the number of swarm nodes in the network.
It is discussed in Section VI-C.

TABLE II
Proof-of-concept implementation results

Slices BRAM DSP

P
ro

ce
ss

or HW interface 33 0 0
Co-processor 664 0 0
MicroBlaze & periph 862 16 3
subtotal 1559 16 3

H
ar

dw
ar

e framefilter 20 0 0
network interface 177 4 0
RX buffer 62 1 0
TX buffer 62 1 0
subtotal 324 6 0

Total (including glue) 1931 22 3
usage in ML605 5.1% 5.3% 0.4%
usage in XC7A 15T* 74.3% 88% 6.7%
usage in XC7V X1140T* 1.0% 1.1% 0.1%

* interpolated results

B. Runtime
This section describes the runtime performance of

SHeLA messages from the point of view of the FPGA.
The delays for sending and receiving the messages over
the network are not considered.

When a network message arrives, there is an amount of
overhead which is required to retrieve the message from
the FIFO and to parse it. The clock cycle overhead is a
deterministic value that depends on the message size. For
our analysis, we round it up to treceive = 3000 cycles. With
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the clock for the processor system running at 100 MHz,
this makes treceive = 30 µs.

When a network message is sent, again there is an
amount of overhead similar to receiving a message. From
the measurements on the proof-of-concept implementa-
tion, this runtime can be rounded up to tsend = 35 µs.

When a new swarm node or a new edge verifier is
registered in the network, this results in adding an entry in
the corresponding table of each existing edge verifier. Al-
though this addition can be done in fixed time, performing
a look-up in the table takes a runtime that is proportional
to the size of the table. For the proof-of-concept imple-
mentation, this results in 5 µs < tlookup < 10 µs, which is
rounded up to tlookup = 10 µs.

Finally, when a hash is to be calculated, the processor
system uses the co-processor. Sending a correctly padded,
single 512-block message to the co-processor and running
the SHA256 core takes thash = 14 µs.

With these empirical values, Table III can be con-
structed. Table III provides the reader with a rough idea
on the timing of the different operations. These results
are based on the actual measured values of the lab imple-
mentation. In practice, however, we expect the network
delay to dominate over the delays of the operations on the
FPGA.

TABLE III
The required time for different operations, constructed

from R(eceive), S(end), L(ookup), and H(ash) actions.

Operation R S L H time
registering device X X X 75 µs
registering FPGA X X X 75 µs
device attestation TX X X 45 µs
device attestation RX X X X 54 µs
FPGA synchronization TX X X X 59 µs
FPGA synchronization RX X X X 54 µs
FPGA update TX X X 45 µs
FPGA update RX X X X 54 µs
attestation RX X X X X 89 µs

C. Memory consumption
To make an estimate on the memory usage, we first

give an overview of the sizes that are used: IDPrv, IDEV,
TS and offset 32-bit value, the flag is 8 bits and each
hash value is 256 bits. Taken into account these sizes, each
entry in TEV,R uses 328 bits, each entry in TEV,G uses 352
bits, and each entry in TEV,E uses 288 bits. The number
of entries in each table is determined by the number of
swarm nodes registered in the FPGA (in TEV,R), the number
of migrated attested swarm nodes that are registered by
another FPGA (in TEV,G), and the number of FPGAs in
the edge (in TEV,E).

To determine the number of entries in the tables and
thus the occupied memory size in the FPGA, we first
consider the case that all swarm nodes are stationary (0%
mobility), i.e. the FPGA only attests swarm nodes that it
registered itself. When we assume that the tables fill the
entire embedded memory of the FPGA, Figure 6 presents
a plot that visualizes the maximum number of swarm

nodes as a function of the number of edge verifiers. This
relation is plotted for the same three FPGAs as described
in Section VI-A: the FPGA used in the proof-of-concept
implementation (ML605); the second smallest low-end 7-
series FPGA of Xilinx (XC7A15T); and the most recent
high-end 7-series FPGA of Xilinx (XC7VJ870T).

Fig. 6. Number of supported swarm nodes as a function of the
number of edge verifiers.

The proposed SHeLA protocol can deal with migrating
devices. The more devices that are capable of moving
within the reach of other FPGAs, the more memory they
will claim. This is because of the entries of migrated
devices in the TEV,G table. Figure 7 plots the maximum
number of swarm devices that can be hosted by an edge
verifier on the ML605 board for three distinct cases: 1%
of the swarm nodes migrate, 10% of the swarm nodes
migrate, and 50% of the swarm nodes migrate. Note that,
if the number of migrating swarm nodes causes the TEV,G
table to overflow, the edge verifier will not be able to
handle additional migrating swarm nodes. This can be
solved by introducing a new edge verifier. Further, we
assume that, for a given application, the maximum number
of migrating swarm nodes can be determined in advance
to avoid this situation.

Fig. 7. Number of swarm nodes as a function of number of the
number edge verifiers for three different levels of mobility in the
proof-of-concept (PoC) implementation.
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From Figure 6, we can conclude that with five low-end
XC7A 15T FPGAs, a swarm of 10’000 devices can be
attested with SHeLA, at the price of around 30 USD per
FPGA. From Figure 7, we can be conclude that if 50% of
the nodes migrate within the reach of another FPGA, this
has an impact of an order of magnitude on the number of
supported nodes in the swarm.

VII. Security Analysis

The main motive of an adversary is to infect a swarm
node in the network and to carry out malicious activities.
Our main purpose in SHeLA is to detect the adversaries
through remote attestation in an efficient way for large
swarm networks. As already mentioned in Section III-A,
the edge verifiers are assumed to be trusted. In a scenario
where this is not the case, the SHeLA scheme needs to be
completed with a traditional one-to-one remote attestation
mechanism between the root verifier and the edge verifiers.
The remainder presents the security analysis of SHeLA
under the assumption that only the swarm nodes are
potentially untrusted. We first analyze the resistance of
SHeLA against a number of threats, after which we match
the security goals presented in Section III-C with the
implemented scheme.

Security against remote adversaries. As discussed,
a remote adversary can affect one or more devices in a
network by introducing malware to those devices. How-
ever, during the attestation of the device, it has to perform
the checksum operation which includes the underlying
software. Thus, malicious code will not evade detection.

Security against local adversaries. In SHeLA we
cannot prevent a local adversary from carrying out eaves-
dropping or snooping attacks. As mentioned earlier, we
encourage the proper use of message encryption and au-
thentication during every communication step. This threat
should be fought off by these measures.

Security against replay attacks. Replay attacks are
mitigated in SHeLA, as we introduce fresh timing-related
information in the challenge through the TS and offset
values. This way, a swarm node cannot repeat a previous
attestation response to fake its sanity.

Security against hardware attacks. Unlike software
adversaries, hardware adversaries can circumvent the min-
imal hardware support in the swarm nodes that ensures a
properly secured one-to-one attestation between the edge
verifiers and the swarm nodes. The SHeLA scheme does
not protect against hardware attacks; it assumes that the
underlying one-to-one remote attestation can be executed
in a secure way.

Security against a malicious edge verifier. We
assume that the edge verifier is a device that is more
powerful than the swarm nodes and therefore has the
capabilities of hardware-assisted security. This allows for
mutual authentication with the root verifier and for being
securely attested by the root verifier. Only upon successful
attestation of the edge verifier, the root verifier accepts the
collective attestation result.

Now we discuss SHeLA’s performance with respect to
the goals mentioned in Section III-C. SHeLA satisfies those
security goals as follows:
• Successful attestation. In SHeLA, each edge veri-

fier performs the attestation for a subset of underlying
swarm nodes. Thanks to the proposed synchroniza-
tion mechanism between the edge verifiers, the root
verifier can receive the attestation report of the entire
swarm from any of the edge verifiers.

• Freshness. In SHeLA, during each attestation phase,
a unique challenge is introduced which is included
in the attestation response to maintain the freshness
of the attestation operation. This unique attestation
challenge prevents replay attacks as an adversary
cannot use a pre-computed attestation result to forge
the attestation process.

• Information on the sanity of the individual
swarm nodes. The SHeLA scheme supports a maxi-
mum granularity depth (GD), as defined in this paper.
The root verifier can choose between verifying the
sanity of the entire swarm (GD0), the sanity of a
subset of the swarm belonging to a specific edge
verifier (GD1), or the sanity of each individual swarm
node (GD2).

• Parallel execution. The edge verifiers are capable
of parallelizing multiple operations: one-to-one swarm
node attestations, edge verifier updates, edge veri-
fication synchronization, and reporting to the root
verifier. Although the proof-of-concept implementa-
tion does not support full parallel execution yet, it is
perfectly possible to support this feature in an FPGA.

VIII. Limitations & Future Work
In this paper, our main objective is to obtain clear

security guarantees and maximize the efficiency and per-
formance of swarm attestation in dynamic networks. Par-
ticularly, we aim to investigate whether efficient remote
attestation of large swarms is possible in real time without
imposing a static nature of the network. However, despite
its many advantages, SHeLA has limitations too.

In particular, in line with other attestation schemes [5],
[7], [17], we do not consider physical adversaries in our
security model. A physical adversary that can manipulate
the swarm devices can forge the result of the attestation.
A more formal approach is needed to counter this threat.

Furthermore, the authenticity of the edge verifiers and
the root verifier is required in a real-world setting. Al-
though this will introduce an overhead for the underlying
devices, it is necessary to counter attacks like Distributed-
Denial-of-Service (DDoS) attacks.

We have plans to make the four following improvements
to the proof-of-concept implementation of SHeLA. The
first one is to move the storage of the three tables (TEV,R,
TEV,G and TEV,E) to a Content Addressable Memory (CAM),
probably in hardware. As can be seen from Table III,
all operations need to perform a look-up. By using a
CAM, we can significantly reduce the amount of time
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required to perform a look-up; the use of a CAM also
results in a constant look-up time. The second and third
improvements we plan to implement, are the following: (1)
the incorporation of data encryption and authentication
for all network messages, and (2) the implementation of
parallel execution of RA, updating, synchronization and
reporting. Finally, the fourth improvement is related to
heterogeneity. In the current proof-of-concept, the swarm
nodes use WiFi communication. It is, however, perfectly
possible to support multiple communication protocols us-
ing FPGAs as edge verifiers.

IX. Conclusion
This paper proposes “SHeLA: Scalable Heterogeneous

Layered Attestation”, an architecture and protocol for the
remote attestation of large swarms of heterogeneous IoT
devices. The mechanism defines the use of edge verifiers
to perform the attestation of the underlying swarm nodes
and to report to the root verifier, which is typically the
network owner. The edge layer can easily be extended
to give the network owner the flexibility to anticipate
a growing network demand and scalability issues. We
define the term granularity depth to indicate the level
to which the root verifier can gain information on the
sanity of the individual devices in the network; SHeLA
provides a maximal granularity depth. We present a proof-
of-concept implementation based on FPGAs and IoT de-
vices to demonstrate the efficiency and effectiveness of the
SHeLA scheme. Even with a small number of low-cost edge
devices, a large swarm of IoT devices can be attested using
SHeLA.
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