
Rev101

spritzers - CTF team

spritz.math.unipd.it/spritzers.html

All information presented here has the only purpose of
teaching how reverse engineering works.

Use your mad skillz only in CTFs or other situations in
which you are legally allowed to do so.

Do not hack the new Playstation. Or maybe do, but be
prepared to get legal troubles (I’m looking at you, geohot).

Disclaimer

But seriously, if you do pls tell me. It’d be awesome.

Disclaimer

Reversing in CTFs
In reversing challenges you have to understand how a
program works, but you don’t have its source code.

You typically have to reverse an algorithm (encryption?) to
get the flag.

Most of the time, solving a challenge is a bit time
consuming but straightforward.

...Unless obfuscation is involved.

Reversing IRL
A lot of cool stuff, but legally it’s a gray area.

Reverse Engineering?

What it is

Final
Product

Design
Information

Not limited to software

(Binary) Software Reverse Engineering

Compiling Software

int main() {
 puts(“YAY”);
 return 0;
}

COMPILER 000100100100
...

Source code Binary

Reversing Software

int main() {
 puts(“YAY”);
 return 0;
}

000100100100
...

Source codeBinary

Reversing Software - The Truth

int main() {
 puts(“YAY”);
 return 0;
}

00010010
...

mov eax, 3
call func
ret

Why is it relevant?
● You don’t always have access to source code
● Vulnerability assessment
● Malware analysis
● Pwning
● Algorithm reversing (default WPA anyone?)
● Interoperability (SMB/Samba, Windows/Wine)
● Hacking embedded devices

Can’t I just use a decompiler?
● Can speed up the reversing, but...
● Decompiling is (generally) undecidable
● Fails in many cases
● Sometimes you want to work at the ASM

level (pwning)

Why should I do it?

● Sometimes it’s fun

This is straight from the Wii’s game signature checking.

(Credits: https://hackmii.com/)

https://hackmii.com/

The Tools

Disassembler

00010010
...

Disassembler

mov eax, 3
call func
ret

Binary ASM

Disassembler
● IDA Pro (https://www.hex-rays.com/products/ida/)

○ GUI
○ Industry standard
○ $$$$$

● Binary Ninja (https://binary.ninja/)
○ GUI
○ Very nice scripting features + has “undo” functionality
○ $$

● Radare2 (https://github.com/radare/radare2)
○ CLI (experimental GUI @ https://github.com/radareorg/cutter/releases)
○ Opensource

● Objdump
○ Seriously, don’t

https://www.hex-rays.com/products/ida/
https://binary.ninja/
https://github.com/radare/radare2
https://github.com/radareorg/cutter/releases

Hex Editor

Hex Editor
● Patch programs
● Inspect file formats
● Change content of files

Many different options here (hexedit, biew, etc…)

Introduction to x86 ASM
(yay)

Quick recap: a process’ memory

Stack

Heap

Main executable

Libraries

0x0000...
.text

.rodata

.got

.data

.bss

.plt

Code

Zero-init’ed data

Read/write data

Read-only data

Imports stuff

Imports stuff

Credits: abiondo

Introduction to x86 ASM
● Only architecture supported by IDA/Binja demo :(
● Your computer probably runs on x86_64

○ x86 still supported
○ 32 bit vs 64 bit

● This is NOT supposed to be a complete ASM lesson
(booooring)

RAX

(some)

x86_64
Registers EAX AH AL

AX

RBX EBX BH BL
BX

RCX ECX CH CL
CX

RDX EDX DH DL
DX

RSI ESI

RSP ESP

RBP EBP

G
en

er
al

Pu
rp

os
e

Stack Pointer
Base Pointer

RIP EIPInstruction Ptr

64 bit

32 bit 16 bit

Instructions - MOV <dst>, <src>
● Copy <src> into <dst>
● MOV EAX, 16

○ EAX = 16
● MOV EAX, [ESP+4]

○ EAX = *(ESP+4)
● MOV AL, ‘a’

○ AL = 0x61

Instructions - LEA <dst>, <src>
● Load Effective Address of <src> into <dst>
● Used to access elements from a buffer/array
● Used to perform simple math operations
● LEA ECX, [EAX+3]

○ ECX = EAX + 3
● LEA EAX, [EBX+2*ESI]

○ EAX = EBX+2*ESI

Instructions - PUSH <src>
● Decrement ESP and put <src> onto the stack (push)
● PUSH EAX

○ ESP -= 4
○ *ESP = (dword) EAX

● PUSH CX
○ ESP -= 2
○ *ESP = (word) CX

Instructions - POP <dst>
● <dst> takes the value on top of the stack, ESP gets

incremented
● POP EAX

○ EAX = *ESP
○ ESP += 4

● POP CX
○ CX = *ESP
○ ESP += 2

PUSH/POP example

PUSH EAX
POP EBX

=

MOV EBX, EAX

Instructions - ADD <dst>, <src>
● <dst> += <src>
● ADD EAX, 16

○ EAX += 16
● ADD AH, AL

○ AH += AL
● ADD ESP, 0x10

○ Remove 16 bytes from the stack

Instructions - SUB <dst>, <src>
● <dst> -= <src>
● SUB EAX, 16

○ EAX -= 16
● SUB AH, AL

○ AH -= AL
● SUB ESP, 0x10

○ Allocate 16 bytes of space on the stack

Flags
● x86 instructions can modify a special register

called FLAGS
● FLAGS contains 1-bit flags:

○ Ex: OF, SF, ZF, AF, PF, and CF
● ZF = Zero Flag
● SF = Sign Flag
● CF = Carry Flag

Flags
● Zero Flag

○ set if the result of last operation was zero
● Sign Flag

○ set if the result of last operation was negative
(dst - src <s 0)

● Carry Flag
○ set if integer underflow (dst <u src)

● See https://stackoverflow.com/questions/8965923/carry-overflow-subtraction-in-x86

https://stackoverflow.com/questions/8965923/carry-overflow-subtraction-in-x86

Flags - Example
MOV RAX, 666

SUB RAX, 666

=>

ZF = 1

SF = 0

CF = 0

Flags - Example
MOV RAX, 123

SUB RAX, 666

=>

ZF = 0

SF = 1

CF = 1

Flags - Example
MOV AL, 0xFF

SUB AL, 0x01

=>

ZF = 0

SF = 1 (-1 - 1 = -2 < 0)

CF = 0 (255 - 1 = 254 > 0)

Instructions - CMP <dst>, <src>
● CoMPare
● Perform a SUB but throw away the result
● Used to set flags
● CMP EAX, 13

○ EAX value doesn’t change
○ TMP = EAX - 13
○ Update the FLAGS according to TMP

Instructions - JMP <dst>
● JuMP to <dst>
● JMP RAX

○ Jump to the address saved in RAX
● JMP 0x1234

○ Jump to address 0x1234

Instructions - Jxx <dst>
● Conditional jump
● Used to control the flow of a program (ex.: IF

expressions)
● JZ/JE => jump if ZF = 1
● JNZ/JNE => jump if ZF = 0
● JB, JA => Jump if <dst> Below/Above <src> (unsigned)
● JL, JG => Jump if <dst> Less/Greater than <src> (signed)
● Many others
● See http://unixwiz.net/techtips/x86-jumps.html

http://unixwiz.net/techtips/x86-jumps.html

Jxx - Example: Password length == 16?
MOV RAX, password_length

CMP RAX, 0x10

JZ ok

JMP exit

ok:

...print ‘yay’...

Jxx - Example: Given number >= 11?
MOV RAX, integer_user_input

CMP RAX, 11

JB fail

JMP ok

fail: ...print ‘too short’...

ok: ...print ‘OK’...

Instructions - XOR <dst>, <src>
● Perform a bitwise XOR between <dst> and <src>
● XOR EAX, EBX

○ EAX ^= EBX
● Truth table:

0 1

0 0 1

1 1 0

Instructions - CALL <dst>
● CALL a subroutine
● CALL 0x123456

○ Push return address on the stack
○ RIP = 0x123456

● Function parameters passed in many different ways

Instructions - RET
● RETurn from a subroutine
● RET

○ Pop return address from stack
○ Jump to it

CALL / RET

0x123456:
...
RET

...
CALL 0x123456
...

How are function parameters passed around?
● On x86, there are many calling conventions
● Sometimes parameters are passed in registers
● Sometimes on the stack
● Return value usually in RAX/EAX
● You should take some time to look at them

https://en.wikipedia.org/wiki/X86_calling_conventions

https://en.wikipedia.org/wiki/X86_calling_conventions

Calling Convention - cdecl

Calling Convention - cdecl

EBP+04: return address

EBP+00: saved EBP

EBP+08: arg1

EBP+10: arg3

EBP+0C: arg2

EBP

ESP

0xFFFFFFFF

0x00000000

Calling Convention - cdecl - Local vars

EBP+04: return address

EBP+00: saved EBP

EBP+08: arg1

EBP+10: arg3

EBP+0C: arg2

EBP-04: local var #1

EBP-08: local var #2

sub esp, 8

EBP

ESP

mov esp, ebp

0xFFFFFFFF

0x00000000

Other useful instructions

NOP - Single-byte instruction that does
nothing

RET - Return from a function

MOVZX - Move and zero extend

MOVSX - Move and sign extend

Now the (slightly) less boring part :D

...a small introduction to reversing and binja

ASM - Linear View

ASM - Graph View (CFG)

Graph View - IF

Graph View - Loop

Binja - Some shortcuts
g - Go to address / symbol

<spacebar> - Switch between linear and graph view

n - Rename symbol

y - Change symbol type

; - Comment (super useful!)

* - Follow pointer

Welcome to cracking reversing 101

crackme v0
● You are given an expensive program
● But you don’t have any money
● You don’t need the license
● You can patch the license check so that

every number is correct

DEMO

crackme v1

● Same program
● We don’t want to patch the binary
● We want to build a keygen

DEMO

crackme_remote

● Similar to crackme
● Running on spritz ctf
● Find a valid key to get the flag
● CRACKME_FLAG=ASD ./crackme_remote

● nc 207.154.238.179 5222

The End

Some pointers
● https://www.hex-rays.com/products/ida/index.shtml
● https://binary.ninja/
● http://www.radare.org/r/
● https://github.com/radareorg/cutter/releases
● http://hopperapp.com/ (only for Mac)
● https://github.com/wtsxDev/reverse-engineering
● https://azeria-labs.com/

https://www.hex-rays.com/products/ida/index.shtml
https://binary.ninja/
http://www.radare.org/r/
https://github.com/radareorg/cutter/releases
http://hopperapp.com/
https://github.com/wtsxDev/reverse-engineering
https://azeria-labs.com/

